Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Mar 7;270(1514):457–466. doi: 10.1098/rspb.2002.2269

How the global structure of protein interaction networks evolves.

Andreas Wagner 1
PMCID: PMC1691265  PMID: 12641899

Abstract

Two processes can influence the evolution of protein interaction networks: addition and elimination of interactions between proteins, and gene duplications increasing the number of proteins and interactions. The rates of these processes can be estimated from available Saccharomyces cerevisiae genome data and are sufficiently high to affect network structure on short time-scales. For instance, more than 100 interactions may be added to the yeast network every million years, a fraction of which adds previously unconnected proteins to the network. Highly connected proteins show a greater rate of interaction turnover than proteins with few interactions. From these observations one can explain (without natural selection on global network structure) the evolutionary sustenance of the most prominent network feature, the distribution of the frequency P(d) of proteins with d neighbours, which is broad-tailed and consistent with a power law, that is: P(d) proportional, variant d (-gamma).

Full Text

The Full Text of this article is available as a PDF (618.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000 Jul 27;406(6794):378–382. doi: 10.1038/35019019. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999 Oct 15;286(5439):509–512. doi: 10.1126/science.286.5439.509. [DOI] [PubMed] [Google Scholar]
  4. Cascante M., Meléndez-Hevia E., Kholodenko B., Sicilia J., Kacser H. Control analysis of transit time for free and enzyme-bound metabolites: physiological and evolutionary significance of metabolic response times. Biochem J. 1995 Jun 15;308(Pt 3):895–899. doi: 10.1042/bj3080895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Easterby J. S. The effect of feedback on pathway transient response. Biochem J. 1986 Feb 1;233(3):871–875. doi: 10.1042/bj2330871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fell D. A., Wagner A. The small world of metabolism. Nat Biotechnol. 2000 Nov;18(11):1121–1122. doi: 10.1038/81025. [DOI] [PubMed] [Google Scholar]
  7. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  8. Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999 Apr;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fraser Hunter B., Hirsh Aaron E., Steinmetz Lars M., Scharfe Curt, Feldman Marcus W. Evolutionary rate in the protein interaction network. Science. 2002 Apr 26;296(5568):750–752. doi: 10.1126/science.1068696. [DOI] [PubMed] [Google Scholar]
  10. Fromont-Racine M., Rain J. C., Legrain P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997 Jul;16(3):277–282. doi: 10.1038/ng0797-277. [DOI] [PubMed] [Google Scholar]
  11. Hughes T. R., Marton M. J., Jones A. R., Roberts C. J., Stoughton R., Armour C. D., Bennett H. A., Coffey E., Dai H., He Y. D. Functional discovery via a compendium of expression profiles. Cell. 2000 Jul 7;102(1):109–126. doi: 10.1016/s0092-8674(00)00015-5. [DOI] [PubMed] [Google Scholar]
  12. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001 Mar 13;98(8):4569–4574. doi: 10.1073/pnas.061034498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jeong H., Mason S. P., Barabási A. L., Oltvai Z. N. Lethality and centrality in protein networks. Nature. 2001 May 3;411(6833):41–42. doi: 10.1038/35075138. [DOI] [PubMed] [Google Scholar]
  14. Jeong H., Tombor B., Albert R., Oltvai Z. N., Barabási A. L. The large-scale organization of metabolic networks. Nature. 2000 Oct 5;407(6804):651–654. doi: 10.1038/35036627. [DOI] [PubMed] [Google Scholar]
  15. Li W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. doi: 10.1007/BF02407308. [DOI] [PubMed] [Google Scholar]
  16. Lynch M., Conery J. S. The evolutionary fate and consequences of duplicate genes. Science. 2000 Nov 10;290(5494):1151–1155. doi: 10.1126/science.290.5494.1151. [DOI] [PubMed] [Google Scholar]
  17. Mewes H. W., Heumann K., Kaps A., Mayer K., Pfeiffer F., Stocker S., Frishman D. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 1999 Jan 1;27(1):44–48. doi: 10.1093/nar/27.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pál C., Papp B., Hurst L. D. Highly expressed genes in yeast evolve slowly. Genetics. 2001 Jun;158(2):927–931. doi: 10.1093/genetics/158.2.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rain J. C., Selig L., De Reuse H., Battaglia V., Reverdy C., Simon S., Lenzen G., Petel F., Wojcik J., Schächter V. The protein-protein interaction map of Helicobacter pylori. Nature. 2001 Jan 11;409(6817):211–215. doi: 10.1038/35051615. [DOI] [PubMed] [Google Scholar]
  20. Roberts C. J., Nelson B., Marton M. J., Stoughton R., Meyer M. R., Bennett H. A., He Y. D., Dai H., Walker W. L., Hughes T. R. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science. 2000 Feb 4;287(5454):873–880. doi: 10.1126/science.287.5454.873. [DOI] [PubMed] [Google Scholar]
  21. Rzhetsky A., Gomez S. M. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics. 2001 Oct;17(10):988–996. doi: 10.1093/bioinformatics/17.10.988. [DOI] [PubMed] [Google Scholar]
  22. Schuster S., Heinrich R. Time hierarchy in enzymatic reaction chains resulting from optimality principles. J Theor Biol. 1987 Nov 21;129(2):189–209. doi: 10.1016/s0022-5193(87)80012-7. [DOI] [PubMed] [Google Scholar]
  23. Schwikowski B., Uetz P., Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol. 2000 Dec;18(12):1257–1261. doi: 10.1038/82360. [DOI] [PubMed] [Google Scholar]
  24. Seoighe C., Wolfe K. H. Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4447–4452. doi: 10.1073/pnas.95.8.4447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Uetz P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000 Feb 10;403(6770):623–627. doi: 10.1038/35001009. [DOI] [PubMed] [Google Scholar]
  26. Wagner A., Fell D. A. The small world inside large metabolic networks. Proc Biol Sci. 2001 Sep 7;268(1478):1803–1810. doi: 10.1098/rspb.2001.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wagner A. The fate of duplicated genes: loss or new function? Bioessays. 1998 Oct;20(10):785–788. doi: 10.1002/(SICI)1521-1878(199810)20:10<785::AID-BIES2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  28. Wagner A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol. 2001 Jul;18(7):1283–1292. doi: 10.1093/oxfordjournals.molbev.a003913. [DOI] [PubMed] [Google Scholar]
  29. Wagner Andreas. Asymmetric functional divergence of duplicate genes in yeast. Mol Biol Evol. 2002 Oct;19(10):1760–1768. doi: 10.1093/oxfordjournals.molbev.a003998. [DOI] [PubMed] [Google Scholar]
  30. Wolfe K. H., Shields D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997 Jun 12;387(6634):708–713. doi: 10.1038/42711. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES