Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Mar 7;270(1514):539–543. doi: 10.1098/rspb.2002.2276

Evolutionary coherence of the mammalian amygdala.

Robert A Barton 1, John P Aggleton 1, Richard Grenyer 1
PMCID: PMC1691272  PMID: 12641910

Abstract

Despite great interest in the role of the amygdala in animal and human behaviour, its very existence as a structurally and functionally unified brain component has been questioned, on the grounds that cell groups within it display divergent pharmacological and connectional characteristics. We argue that the question of whether particular brain nuclei constitute a valid structural and functional unit is inherently an evolutionary question, and we present a method for answering it. The method involves phylogenetic analysis of comparative data to determine whether or not separate regions of the putative brain structure show statistically correlated evolution. We find that, in three separate groups of mammals (primates and two groups of insectivores), evolutionary changes in the volumes of amygdala components are strongly correlated, even after controlling for volumetric change in a wide range of limbic and other brain structures. This allows us to reject the strong claim that the amygdala is neither a structural nor a functional unit, and demonstrates the importance of evolutionary analysis in resolving such issues in systems neuroscience.

Full Text

The Full Text of this article is available as a PDF (120.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggleton J. P. A description of intra-amygdaloid connections in old world monkeys. Exp Brain Res. 1985;57(2):390–399. doi: 10.1007/BF00236545. [DOI] [PubMed] [Google Scholar]
  2. Barton R. A., Harvey P. H. Mosaic evolution of brain structure in mammals. Nature. 2000 Jun 29;405(6790):1055–1058. doi: 10.1038/35016580. [DOI] [PubMed] [Google Scholar]
  3. Finlay B. L., Darlington R. B., Nicastro N. Developmental structure in brain evolution. Behav Brain Sci. 2001 Apr;24(2):263–308. [PubMed] [Google Scholar]
  4. McDonald A. J. Cortical pathways to the mammalian amygdala. Prog Neurobiol. 1998 Jun;55(3):257–332. doi: 10.1016/s0301-0082(98)00003-3. [DOI] [PubMed] [Google Scholar]
  5. Meisami E., Bhatnagar K. P. Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech. 1998 Dec 15;43(6):476–499. doi: 10.1002/(SICI)1097-0029(19981215)43:6<476::AID-JEMT2>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  6. Purvis A. A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):405–421. doi: 10.1098/rstb.1995.0078. [DOI] [PubMed] [Google Scholar]
  7. Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
  8. Stephan H., Frahm H. D., Baron G. Comparison of brain structure volumes in Insectivora and primates. VII. Amygdaloid components. J Hirnforsch. 1987;28(5):571–584. [PubMed] [Google Scholar]
  9. Stephan H., Frahm H., Baron G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol (Basel) 1981;35(1):1–29. doi: 10.1159/000155963. [DOI] [PubMed] [Google Scholar]
  10. Swanson L. W., Petrovich G. D. What is the amygdala? Trends Neurosci. 1998 Aug;21(8):323–331. doi: 10.1016/s0166-2236(98)01265-x. [DOI] [PubMed] [Google Scholar]
  11. Turner B. H., Gupta K. C., Mishkin M. The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J Comp Neurol. 1978 Feb 1;177(3):381–396. doi: 10.1002/cne.901770303. [DOI] [PubMed] [Google Scholar]
  12. Young M. P., Hilgetag C. C., Scannell J. W. On imputing function to structure from the behavioural effects of brain lesions. Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):147–161. doi: 10.1098/rstb.2000.0555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Young M. P., Scannell J. W., Burns G. A., Blakemore C. Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci. 1994 Jul-Sep;5(3):227–250. doi: 10.1515/revneuro.1994.5.3.227. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12641910s01.pdf (148.9KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES