Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Mar 22;270(1515):563–568. doi: 10.1098/rspb.2002.2264

Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda).

S Helluy 1, F Thomas 1
PMCID: PMC1691277  PMID: 12769454

Abstract

The larval flatworm Microphallus papillorobustus encysts in the protocerebrum of its intermediate host, Gammarus insensibilis, and changes the gammarid's responses to mechanical and photic stimuli. The resulting aberrant escape behaviour renders infected gammarids more susceptible to predation by birds, the definitive hosts of the parasite. We used immunocytochemical methods to explore the mechanisms underlying these subtle behavioural modifications. Whole mounts of gammarid brains were labelled with fluorescent anti-serotonin and anti-synapsin antibodies and viewed using confocal microscopy. Two types of change were observed in infected brains: the intensity of the serotonergic label was altered in specific regions of the brain, and the architecture of some serotonergic tracts and neurons was affected. A morphometric analysis of the distribution of the label showed that serotonergic immunoreactivity was decreased significantly (by 62%) in the optic neuropils, but not in the olfactory lobes, in the presence of the parasite. In addition, the optic tracts and the tritocerebral giant neurons were stunted in parasitized individuals. Published evidence demonstrates changes in serotonin levels in hosts ranging from crustaceans to mammals infected by parasites as diverse as protozoans and helminths. The present study suggests that the degeneration of discrete sets of serotonergic neurons might underlie the serotonergic imbalance and thus contribute to host manipulation.

Full Text

The Full Text of this article is available as a PDF (806.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel Ghafar A. E., Elkowrany S. E., Salem S. A., Menaisy A. A., Fadel W. A., Awara W. M. Effect of some parasitic infection on neurotransmitters in the brain of experimentally infected mice before and after treatment. J Egypt Soc Parasitol. 1996 Aug;26(2):497–508. [PubMed] [Google Scholar]
  2. Beltz B. S. Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. 1999 Jan 15-Feb 1Microsc Res Tech. 44(2-3):105–120. doi: 10.1002/(SICI)1097-0029(19990115/01)44:2/3<105::AID-JEMT5>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  3. Berdoy M., Webster J. P., Macdonald D. W. Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci. 2000 Aug 7;267(1452):1591–1594. doi: 10.1098/rspb.2000.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Condron B. G. Serotonergic neurons transiently require a midline-derived FGF signal. Neuron. 1999 Nov;24(3):531–540. doi: 10.1016/s0896-6273(00)81110-1. [DOI] [PubMed] [Google Scholar]
  5. Flegr J., Zitková S., Kodym P., Frynta D. Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology. 1996 Jul;113(Pt 1):49–54. doi: 10.1017/s0031182000066269. [DOI] [PubMed] [Google Scholar]
  6. Helluy S. Relations hôtes-parasite du trematode Microphallus papillorobustus (Rankin, 1940) II--Modifications du comportement des Gammarus hôtes intermédiaires et localisation des métacercaires. Ann Parasitol Hum Comp. 1983;58(1):1–17. [PubMed] [Google Scholar]
  7. Helluy S. Relations hôtes-parasite du trématode Microphallus papillorobustus (Rankin, 1940). I. Pénetration des cercaires et rapports des métacercaires avec le tissu nerveux des Gammarus, hôtes intermédiaires. Ann Parasitol Hum Comp. 1982;57(3):263–270. [PubMed] [Google Scholar]
  8. Helluy S. Relations hôtes-parasites du trématode Microphallus papillorobustus (Rankin, 1940). III--Facteurs impliqués dans les modifications du comportement des Gammarus, hôtes intermédiaires et tests de prédation. Ann Parasitol Hum Comp. 1984;59(1):41–56. [PubMed] [Google Scholar]
  9. Lindholm D., Harikka J., da Penha Berzaghi M., Castrén E., Tzimagiorgis G., Hughes R. A., Thoenen H. Fibroblast growth factor-5 promotes differentiation of cultured rat septal cholinergic and raphe serotonergic neurons: comparison with the effects of neurotrophins. Eur J Neurosci. 1994 Feb 1;6(2):244–252. doi: 10.1111/j.1460-9568.1994.tb00267.x. [DOI] [PubMed] [Google Scholar]
  10. Maynard B. J., DeMartini L., Wright W. G. Gammarus lacustris harboring Polymorphus paradoxus show altered patterns of serotonin-like immunoreactivity. J Parasitol. 1996 Aug;82(4):663–666. [PubMed] [Google Scholar]
  11. Oswald I. P., Wynn T. A., Sher A., James S. L. NO as an effector molecule of parasite killing: modulation of its synthesis by cytokines. Comp Biochem Physiol Pharmacol Toxicol Endocrinol. 1994 May;108(1):11–18. doi: 10.1016/1367-8280(94)90083-3. [DOI] [PubMed] [Google Scholar]
  12. Overli O., Páll M., Borg B., Jobling M., Winberg S. Effects of Schistocephalus solidus infection on brain monoaminergic activity in female three-spined sticklebacks Gasterosteus aculeatus. Proc Biol Sci. 2001 Jul 7;268(1474):1411–1415. doi: 10.1098/rspb.2001.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Scholz N. L., Chang E. S., Graubard K., Truman J. W. The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J Neurobiol. 1998 Feb 15;34(3):208–226. doi: 10.1002/(sici)1097-4695(19980215)34:3<208::aid-neu2>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  14. Terenina N. B., Asatrian A. M., Movsesian S. O. Soderzhanie serotonina v mozge i drugikh tkaniakh krys pri éksperimental'nom trikhinelleze. Dokl Akad Nauk. 1997 Jul;355(3):412–413. [PubMed] [Google Scholar]
  15. Thomas F., Guldner E., Renaud F. Differential parasite (Trematoda) encapsulation in Gammarus aequicauda (Amphipoda). J Parasitol. 2000 Jun;86(3):650–654. doi: 10.1645/0022-3395(2000)086[0650:DPTEIG]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  16. Thompson K. S., Zeidler M. P., Bacon J. P. Comparative anatomy of serotonin-like immunoreactive neurons in isopods: putative homologues in several species. J Comp Neurol. 1994 Sep 22;347(4):553–569. doi: 10.1002/cne.903470407. [DOI] [PubMed] [Google Scholar]
  17. Weiger W. A. Serotonergic modulation of behaviour: a phylogenetic overview. Biol Rev Camb Philos Soc. 1997 Feb;72(1):61–95. doi: 10.1017/s0006323196004975. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES