Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Mar 22;270(1515):591–596. doi: 10.1098/rspb.2002.2224

Genetic and plastic responses of a northern mammal to climate change.

Denis Réale 1, Andrew G McAdam 1, Stan Boutin 1, Dominique Berteaux 1
PMCID: PMC1691280  PMID: 12769458

Abstract

Climate change is predicted to be most severe in northern regions and there has been much interest in to what extent organisms can cope with these changes through phenotypic plasticity or microevolutionary processes. A red squirrel population in the southwest Yukon, Canada, faced with increasing spring temperatures and food supply has advanced the timing of breeding by 18 days over the last 10 years (6 days per generation). Longitudinal analysis of females breeding in multiple years suggests that much of this change in parturition date can be explained by a plastic response to increased food abundance (3.7 days per generation). Significant changes in breeding values (0.8 days per generation), were in concordance with predictions from the breeder's equation (0.6 days per generation), and indicated that an evolutionary response to strong selection favouring earlier breeders also contributed to the observed advancement of this heritable trait. The timing of breeding in this population of squirrels, therefore, has advanced as a result of both phenotypic changes within generations, and genetic changes among generations in response to a rapidly changing environment.

Full Text

The Full Text of this article is available as a PDF (168.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Both C., Visser M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature. 2001 May 17;411(6835):296–298. doi: 10.1038/35077063. [DOI] [PubMed] [Google Scholar]
  2. Brown J. L., Li S. H., Bhagabati N. Long-term trend toward earlier breeding in an American bird: a response to global warming? Proc Natl Acad Sci U S A. 1999 May 11;96(10):5565–5569. doi: 10.1073/pnas.96.10.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coltman D. W., Pilkington J., Kruuk L. E., Wilson K., Pemberton J. M. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution. 2001 Oct;55(10):2116–2125. doi: 10.1111/j.0014-3820.2001.tb01326.x. [DOI] [PubMed] [Google Scholar]
  4. Etterson J. R., Shaw R. G. Constraint to adaptive evolution in response to global warming. Science. 2001 Oct 5;294(5540):151–154. doi: 10.1126/science.1063656. [DOI] [PubMed] [Google Scholar]
  5. Grant Peter R., Grant B. Rosemary. Unpredictable evolution in a 30-year study of Darwin's finches. Science. 2002 Apr 26;296(5568):707–711. doi: 10.1126/science.1070315. [DOI] [PubMed] [Google Scholar]
  6. Inouye D. W., Barr B., Armitage K. B., Inouye B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1630–1633. doi: 10.1073/pnas.97.4.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Janzen F. J. Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7487–7490. doi: 10.1073/pnas.91.16.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kruuk L. E., Clutton-Brock T. H., Slate J., Pemberton J. M., Brotherstone S., Guinness F. E. Heritability of fitness in a wild mammal population. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):698–703. doi: 10.1073/pnas.97.2.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McAdam Andrew G., Boutin Stan, Réale Denis, Berteaux Dominique. Maternal effects and the potential for evolution in a natural population of animals. Evolution. 2002 Apr;56(4):846–851. doi: 10.1111/j.0014-3820.2002.tb01396.x. [DOI] [PubMed] [Google Scholar]
  10. Merilä J., Kruuk L. E., Sheldon B. C. Cryptic evolution in a wild bird population. Nature. 2001 Jul 5;412(6842):76–79. doi: 10.1038/35083580. [DOI] [PubMed] [Google Scholar]
  11. Merilä J., Sheldon B. C., Kruuk L. E. Explaining stasis: microevolutionary studies in natural populations. Genetica. 2001;112-113:199–222. [PubMed] [Google Scholar]
  12. Price T., Kirkpatrick M., Arnold S. J. Directional selection and the evolution of breeding date in birds. Science. 1988 May 6;240(4853):798–799. doi: 10.1126/science.3363360. [DOI] [PubMed] [Google Scholar]
  13. Reale D, Festa-Bianchet M, Jorgenson JT. Heritability of body mass varies with age and season in wild bighorn sheep. Heredity (Edinb) 1999 Nov;83(Pt 5):526–532. doi: 10.1038/sj.hdy.6885430. [DOI] [PubMed] [Google Scholar]
  14. Reznick DN, Shaw FH, Rodd FH, Shaw RG. Evaluation of the Rate of Evolution in Natural Populations of Guppies (Poecilia reticulata) Science. 1997 Mar 28;275(5308):1934–1937. doi: 10.1126/science.275.5308.1934. [DOI] [PubMed] [Google Scholar]
  15. Walther Gian-Reto, Post Eric, Convey Peter, Menzel Annette, Parmesan Camille, Beebee Trevor J. C., Fromentin Jean-Marc, Hoegh-Guldberg Ove, Bairlein Franz. Ecological responses to recent climate change. Nature. 2002 Mar 28;416(6879):389–395. doi: 10.1038/416389a. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES