Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Mar 22;270(1515):597–603. doi: 10.1098/rspb.2002.2272

Molecular phylogenetic evidence for ancient divergence of lizard taxa on either side of Wallace's Line.

James A Schulte 2nd 1, Jane Melville 1, Allan Larson 1
PMCID: PMC1691285  PMID: 12769459

Abstract

Wallace's Line, separating the terrestrial faunas of South East Asia from the Australia-New Guinea region, is the most prominent and well-studied biogeographical division in the world. Phylogenetically distinct subgroups of major animal and plant groups have been documented on either side of Wallace's Line since it was first proposed in 1859. Despite its importance, the temporal history of fragmentation across this line is virtually unknown and the geological foundation has rarely been discussed. Using molecular phylogenetics and dating techniques, we show that the split between taxa in the South East Asian and the Australian-New Guinean geological regions occurred during the Late Jurassic to Early Cretaceous in two independent lizard clades. This estimate is compatible with the hypothesis of rifting Gondwanan continental fragments during the Mesozoic and strongly rejects the hypothetical origin of various members of the Australian-New Guinean herpetofauna as relatively recent invasions from South East Asia. Our finding suggests an ancient fragmentation of lizard taxa on either side of Wallace's Line and provides further evidence that the composition of modern global communities has been significantly affected by rifting and accretion of Gondwanan continental plates during the Middle to Late Mesozoic.

Full Text

The Full Text of this article is available as a PDF (254.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Barker F. Keith, Barrowclough George F., Groth Jeff G. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc Biol Sci. 2002 Feb 7;269(1488):295–308. doi: 10.1098/rspb.2001.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benton M. J. Early origins of modern birds and mammals: molecules vs. morphology. Bioessays. 1999 Dec;21(12):1043–1051. doi: 10.1002/(SICI)1521-1878(199912)22:1<1043::AID-BIES8>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  4. Easteal S. Molecular evidence for the early divergence of placental mammals. Bioessays. 1999 Dec;21(12):1052–1059. doi: 10.1002/(SICI)1521-1878(199912)22:1<1052::AID-BIES9>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  5. Hedges S. B., Parker P. H., Sibley C. G., Kumar S. Continental breakup and the ordinal diversification of birds and mammals. Nature. 1996 May 16;381(6579):226–229. doi: 10.1038/381226a0. [DOI] [PubMed] [Google Scholar]
  6. Kumazawa Y., Nishida M. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol. 1993 Oct;37(4):380–398. doi: 10.1007/BF00178868. [DOI] [PubMed] [Google Scholar]
  7. Macey J. R., Larson A., Ananjeva N. B., Fang Z., Papenfuss T. J. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol. 1997 Jan;14(1):91–104. doi: 10.1093/oxfordjournals.molbev.a025706. [DOI] [PubMed] [Google Scholar]
  8. Macey J. R., Larson A., Ananjeva N. B., Papenfuss T. J. Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. J Mol Evol. 1997 Jun;44(6):660–674. doi: 10.1007/pl00006190. [DOI] [PubMed] [Google Scholar]
  9. Macey J. R., Schulte J. A., 2nd, Ananjeva N. B., Larson A., Rastegar-Pouyani N., Shammakov S. M., Papenfuss T. J. Phylogenetic relationships among Agamid lizards of the Laudakia caucasia species group: testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Mol Phylogenet Evol. 1998 Aug;10(1):118–131. doi: 10.1006/mpev.1997.0478. [DOI] [PubMed] [Google Scholar]
  10. Macey J. R., Schulte J. A., 2nd, Larson A., Ananjeva N. B., Wang Y., Pethiyagoda R., Rastegar-Pouyani N., Papenfuss T. J. Evaluating trans-tethys migration: an example using acrodont lizard phylogenetics. Syst Biol. 2000 Jun;49(2):233–256. doi: 10.1093/sysbio/49.2.233. [DOI] [PubMed] [Google Scholar]
  11. Macey J. R., Schulte J. A., 2nd, Larson A., Fang Z., Wang Y., Tuniyev B. S., Papenfuss T. J. Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Mol Phylogenet Evol. 1998 Feb;9(1):80–87. doi: 10.1006/mpev.1997.0440. [DOI] [PubMed] [Google Scholar]
  12. Macey J. R., Schulte J. A., 2nd, Larson A., Tuniyev B. S., Orlov N., Papenfuss T. J. Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol Phylogenet Evol. 1999 Aug;12(3):250–272. doi: 10.1006/mpev.1999.0615. [DOI] [PubMed] [Google Scholar]
  13. Macey J. R., Verma A. Re: Homology in phylogenetic analysis: alignment of transfer RNA genes and the phylogenetic position of snakes. Mol Phylogenet Evol. 1997 Apr;7(2):272–279. doi: 10.1006/mpev.1997.0379. [DOI] [PubMed] [Google Scholar]
  14. Melville J., Schulte J. A., 2nd, Larson A. A molecular phylogenetic study of ecological diversification in the Australian lizard genus Ctenophorus. J Exp Zool. 2001 Dec 15;291(4):339–353. doi: 10.1002/jez.1133. [DOI] [PubMed] [Google Scholar]
  15. Muse S. V., Weir B. S. Testing for equality of evolutionary rates. Genetics. 1992 Sep;132(1):269–276. doi: 10.1093/genetics/132.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  17. Posada D., Crandall K. A. Selecting the best-fit model of nucleotide substitution. Syst Biol. 2001 Aug;50(4):580–601. [PubMed] [Google Scholar]
  18. Rambaut A., Grassly N. C. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci. 1997 Jun;13(3):235–238. doi: 10.1093/bioinformatics/13.3.235. [DOI] [PubMed] [Google Scholar]
  19. Raxworthy C. J., Forstner M. R. J., Nussbaum R. A. Chameleon radiation by oceanic dispersal. Nature. 2002 Feb 14;415(6873):784–787. doi: 10.1038/415784a. [DOI] [PubMed] [Google Scholar]
  20. Townsend Ted, Larson Allan. Molecular phylogenetics and mitochondrial genomic evolution in the chamaeleonidae (Reptilia, Squamata). Mol Phylogenet Evol. 2002 Apr;23(1):22–36. doi: 10.1006/mpev.2001.1076. [DOI] [PubMed] [Google Scholar]
  21. Weisrock D. W., Macey J. R., Ugurtas I. H., Larson A., Papenfuss T. J. Molecular phylogenetics and historical biogeography among salamandrids of the "true" salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Mol Phylogenet Evol. 2001 Mar;18(3):434–448. doi: 10.1006/mpev.2000.0905. [DOI] [PubMed] [Google Scholar]
  22. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994 Sep;39(3):306–314. doi: 10.1007/BF00160154. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12769459s01.pdf (79.7KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES