Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Apr 7;270(1516):749–754. doi: 10.1098/rspb.2002.2282

Ultrastructure meets reproductive success: performance of a sphecid wasp is correlated with the fine structure of the flight-muscle mitochondria.

Erhard Strohm 1, Wiltrud Daniels 1
PMCID: PMC1691295  PMID: 12713750

Abstract

Organisms show a remarkable inter-individual variation in reproductive success. The proximate causes of this variation are not well understood. We hypothesized that the ultrastructure of costly or complex tissues or organelles might affect reproductive performance. We tested this hypothesis in females of a sphecid wasp, the European beewolf, Philanthus triangulum (Hymenoptera, Sphecidae), that show considerable variation in reproductive success. The most critical component of reproduction in beewolf females is flying with paralysed honeybees, which more than double their weight. Because of the high energetic requirements for flight, we predicted that the ultrastructure of the flight-muscle mitochondria might influence female success. We determined the density of mitochondria and the density of the inner mitochondrial membranes (DIMM) of the flight muscles as well as age, body size and fat content. Only DIMM had a significant influence on female reproductive success, which might be mediated by an elevated adenosine triphosphate (ATP) supply. The variation in DIMM might result from differences in larval provisions or from an accumulation of mutations in the mitochondrial genome. Our results support the hypothesis that the organization of complex structures contributes to inter-individual variation in reproductive success.

Full Text

The Full Text of this article is available as a PDF (164.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clayton D. A. Replication of animal mitochondrial DNA. Cell. 1982 Apr;28(4):693–705. doi: 10.1016/0092-8674(82)90049-6. [DOI] [PubMed] [Google Scholar]
  3. Davies J. The effect of age and diet on the ultrastructure of hymenopteran flight muscle. Exp Gerontol. 1974 Nov;9(5-6):215–219. doi: 10.1016/0531-5565(74)90015-1. [DOI] [PubMed] [Google Scholar]
  4. Fiala John C., Spacek Josef, Harris Kristen M. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev. 2002 Jun;39(1):29–54. doi: 10.1016/s0165-0173(02)00158-3. [DOI] [PubMed] [Google Scholar]
  5. Fridén J., Sjöström M., Ekblom B. Muscle fibre type characteristics in endurance trained and untrained individuals. Eur J Appl Physiol Occup Physiol. 1984;52(3):266–271. doi: 10.1007/BF01015207. [DOI] [PubMed] [Google Scholar]
  6. Harrison J. F., Roberts S. P. Flight respiration and energetics. Annu Rev Physiol. 2000;62:179–205. doi: 10.1146/annurev.physiol.62.1.179. [DOI] [PubMed] [Google Scholar]
  7. Howald H., Hoppeler H., Claassen H., Mathieu O., Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch. 1985 Apr;403(4):369–376. doi: 10.1007/BF00589248. [DOI] [PubMed] [Google Scholar]
  8. Hulbert A. J., Mantaj W., Janssens P. A. Development of mammalian endothermic metabolism: quantitative changes in tissue mitochondria. Am J Physiol. 1991 Sep;261(3 Pt 2):R561–R568. doi: 10.1152/ajpregu.1991.261.3.R561. [DOI] [PubMed] [Google Scholar]
  9. Larsson N. G., Oldfors A. Mitochondrial myopathies. Acta Physiol Scand. 2001 Mar;171(3):385–393. doi: 10.1046/j.1365-201x.2001.00842.x. [DOI] [PubMed] [Google Scholar]
  10. Marden J. H. Variability in the size, composition, and function of insect flight muscles. Annu Rev Physiol. 2000;62:157–178. doi: 10.1146/annurev.physiol.62.1.157. [DOI] [PubMed] [Google Scholar]
  11. McKenzie Debbie, Bua Entela, McKiernan Susan, Cao Zhengjin, Aiken Judd M., Jonathan Wanagat Mitochondrial DNA deletion mutations: a causal role in sarcopenia. Eur J Biochem. 2002 Apr;269(8):2010–2015. doi: 10.1046/j.1432-1033.2002.02867.x. [DOI] [PubMed] [Google Scholar]
  12. Miquel J. An integrated theory of aging as the result of mitochondrial-DNA mutation in differentiated cells. Arch Gerontol Geriatr. 1991 Mar-Jun;12(2-3):99–117. doi: 10.1016/0167-4943(91)90022-i. [DOI] [PubMed] [Google Scholar]
  13. Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol. 1998 Jan-Mar;33(1-2):113–126. doi: 10.1016/s0531-5565(97)00060-0. [DOI] [PubMed] [Google Scholar]
  14. Naviaux R. K., McGowan K. A. Organismal effects of mitochondrial dysfunction. Hum Reprod. 2000 Jul;15 (Suppl 2):44–56. doi: 10.1093/humrep/15.suppl_2.44. [DOI] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1997.0060. [DOI] [PMC free article] [Google Scholar]
  16. Palmer J. D., Adams K. L., Cho Y., Parkinson C. L., Qiu Y. L., Song K. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6960–6966. doi: 10.1073/pnas.97.13.6960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scheller K., Sekeris C. E., Krohne G., Hock R., Hansen I. A., Scheer U. Localization of glucocorticoid hormone receptors in mitochondria of human cells. Eur J Cell Biol. 2000 May;79(5):299–307. doi: 10.1078/S0171-9335(04)70033-3. [DOI] [PubMed] [Google Scholar]
  18. Simoneau J. A., Bouchard C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995 Aug;9(11):1091–1095. doi: 10.1096/fasebj.9.11.7649409. [DOI] [PubMed] [Google Scholar]
  19. Strohm E, Lechner K. Male size does not affect territorial behaviour and life history traits in a sphecid wasp. Anim Behav. 2000 Jan;59(1):183–191. doi: 10.1006/anbe.1999.1280. [DOI] [PubMed] [Google Scholar]
  20. Strohm E, Linsenmair KE. Female size affects provisioning and sex allocation in a digger wasp. Anim Behav. 1997 Jul;54(1):23–34. doi: 10.1006/anbe.1996.0431. [DOI] [PubMed] [Google Scholar]
  21. Suomalainen A., Kaukonen J. Diseases caused by nuclear genes affecting mtDNA stability. Am J Med Genet. 2001 Spring;106(1):53–61. doi: 10.1002/ajmg.1379. [DOI] [PubMed] [Google Scholar]
  22. Suwa M., Miyazaki T., Nakamura T., Sasaki S., Ohmori H., Katsuta S. Hereditary dominance of fast-twitch fibers in skeletal muscles and relation of thyroid hormone under physiological conditions in rats. Acta Anat (Basel) 1998;162(1):40–45. doi: 10.1159/000046467. [DOI] [PubMed] [Google Scholar]
  23. Vann A. C., Webster G. C. Age-related changes in mitochondrial function in Drosophila melanogaster. Exp Gerontol. 1977;12(1-2):1–5. doi: 10.1016/0531-5565(77)90025-0. [DOI] [PubMed] [Google Scholar]
  24. Wallace D. C. Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J. 2000 Feb;139(2 Pt 3):S70–S85. doi: 10.1067/mhj.2000.103934. [DOI] [PubMed] [Google Scholar]
  25. Wegener G. Flying insects: model systems in exercise physiology. Experientia. 1996 May 15;52(5):404–412. doi: 10.1007/BF01919307. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES