Abstract
A general derivation is presented for the scaling laws governing the size and number of capillary blood vessels in mammals. The derivation is based on the assumption of three idealized similarity principles known to apply, at least approximately, to resting mammals: (i) size-invariant blood pressure; (ii) size-invariant fraction of blood in the capillaries; and (iii) size-invariant oxygen consumption and uptake, per unit of body mass, during each heart cycle. Results indicate that the radius and length of capillaries, and the number that are open and active in the resting state, should scale with mammal mass to the powers 1/12, 5/24 and 5/8, respectively, consistent with earlier work by the author. Measurements are presented supporting the results. Physiological changes accompanying strenuous exercise are accounted for by a change in the scaling law for capillary number, from scaling exponent 5/8 to 3/4.
Full Text
The Full Text of this article is available as a PDF (209.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adolph E. F. Quantitative Relations in the Physiological Constitutions of Mammals. Science. 1949 Jun 10;109(2841):579–585. doi: 10.1126/science.109.2841.579. [DOI] [PubMed] [Google Scholar]
- Amin T. M., Sirs J. A. The blood rheology of man and various animal species. Q J Exp Physiol. 1985 Jan;70(1):37–49. doi: 10.1113/expphysiol.1985.sp002895. [DOI] [PubMed] [Google Scholar]
- Banavar J. R., Maritan A., Rinaldo A. Size and form in efficient transportation networks. Nature. 1999 May 13;399(6732):130–132. doi: 10.1038/20144. [DOI] [PubMed] [Google Scholar]
- Bishop C. M. The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc Biol Sci. 1999 Nov 22;266(1435):2275–2281. doi: 10.1098/rspb.1999.0919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darveau Charles-A, Suarez Raul K., Andrews Russel D., Hochachka Peter W. Allometric cascade as a unifying principle of body mass effects on metabolism. Nature. 2002 May 9;417(6885):166–170. doi: 10.1038/417166a. [DOI] [PubMed] [Google Scholar]
- Dawson T. H. Similitude in the cardiovascular system of mammals. J Exp Biol. 2001 Feb;204(Pt 3):395–407. doi: 10.1242/jeb.204.3.395. [DOI] [PubMed] [Google Scholar]
- Dodds P. S., Rothman D. H., Weitz J. S. Re-examination of the "3/4-law" of metabolism. J Theor Biol. 2001 Mar 7;209(1):9–27. doi: 10.1006/jtbi.2000.2238. [DOI] [PubMed] [Google Scholar]
- Gehr P., Mwangi D. K., Ammann A., Maloiy G. M., Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir Physiol. 1981 Apr;44(1):61–86. doi: 10.1016/0034-5687(81)90077-3. [DOI] [PubMed] [Google Scholar]
- Heusner A. A. Size and power in mammals. J Exp Biol. 1991 Oct;160:25–54. doi: 10.1242/jeb.160.1.25. [DOI] [PubMed] [Google Scholar]
- Holt J. P., Rhode E. A., Kines H. Ventricular volumes and body weight in mammals. Am J Physiol. 1968 Sep;215(3):704–715. doi: 10.1152/ajplegacy.1968.215.3.704. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Mathieu O., Weibel E. R., Krauer R., Lindstedt S. L., Taylor C. R. Design of the mammalian respiratory system. VIII Capillaries in skeletal muscles. Respir Physiol. 1981 Apr;44(1):129–150. doi: 10.1016/0034-5687(81)90080-3. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Weibel E. R. Limits for oxygen and substrate transport in mammals. J Exp Biol. 1998 Apr;201(Pt 8):1051–1064. doi: 10.1242/jeb.201.8.1051. [DOI] [PubMed] [Google Scholar]
- Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919 May 20;52(6):409–415. doi: 10.1113/jphysiol.1919.sp001839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rstb.1997.0032. [DOI] [PMC free article] [Google Scholar]
- SCHMIDT-NEILSEN K., LARIMER J. L. Oxygen dissociation curves of mammalian blood in relation to body size. Am J Physiol. 1958 Nov;195(2):424–428. doi: 10.1152/ajplegacy.1958.195.2.424. [DOI] [PubMed] [Google Scholar]
- SCHMIDT-NIELSEN K., PENNYCUIK P. Capillary density in mammals in relation to body size and oxygen consumption. Am J Physiol. 1961 Apr;200:746–750. doi: 10.1152/ajplegacy.1961.200.4.746. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Maloiy G. M., Weibel E. R., Langman V. A., Kamau J. M., Seeherman H. J., Heglund N. C. Design of the mammalian respiratory system. III Scaling maximum aerobic capacity to body mass: wild and domestic mammals. Respir Physiol. 1981 Apr;44(1):25–37. doi: 10.1016/0034-5687(81)90075-x. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol. 1981 Apr;44(1):1–10. [PubMed] [Google Scholar]
- Weibel Ewald R. Physiology: the pitfalls of power laws. Nature. 2002 May 9;417(6885):131–132. doi: 10.1038/417131a. [DOI] [PubMed] [Google Scholar]
- West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology. Science. 1997 Apr 4;276(5309):122–126. doi: 10.1126/science.276.5309.122. [DOI] [PubMed] [Google Scholar]