Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Apr 7;270(1516):699–708. doi: 10.1098/rspb.2002.2305

Disease evolution on networks: the role of contact structure.

Jonathan M Read 1, Matt J Keeling 1
PMCID: PMC1691304  PMID: 12713743

Abstract

Owing to their rapid reproductive rate and the severe penalties for reduced fitness, diseases are under immense evolutionary pressure. Understanding the evolutionary response of diseases in new situations has clear public-health consequences, given the changes in social and movement patterns over recent decades and the increased use of antibiotics. This paper investigates how a disease may adapt in response to the routes of transmission available between infected and susceptible individuals. The potential transmission routes are defined by a computer-generated contact network, which we describe as either local (highly clustered networks where connected individuals are likely to share common contacts) or global (unclustered networks with a high proportion of long-range connections). Evolution towards stable strategies operates through the gradual random mutation of disease traits (transmission rate and infectious period) whenever new infections occur. In contrast to mean-field models, the use of contact networks greatly constrains the evolutionary dynamics. In the local networks, high transmission rates are selected for, as there is intense competition for susceptible hosts between disease progeny. By contrast, global networks select for moderate transmission rates because direct competition between progeny is minimal and a premium is placed upon persistence. All networks show a very slow but steady rise in the infectious period.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod R., Hamilton W. D. The evolution of cooperation. Science. 1981 Mar 27;211(4489):1390–1396. doi: 10.1126/science.7466396. [DOI] [PubMed] [Google Scholar]
  2. Blanchard J. F. Populations, pathogens, and epidemic phases: closing the gap between theory and practice in the prevention of sexually transmitted diseases. Sex Transm Infect. 2002 Apr;78 (Suppl 1):i183–i188. doi: 10.1136/sti.78.suppl_1.i183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boots M., Sasaki A. 'Small worlds' and the evolution of virulence: infection occurs locally and at a distance. Proc Biol Sci. 1999 Oct 7;266(1432):1933–1938. doi: 10.1098/rspb.1999.0869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brisson M., Boily M. C., Mâsse B. R., Adrien A., Léaune V. Highlights of the sexual activity of the heterosexual population in the province of Quebec. Sex Transm Infect. 1999 Oct;75(5):296–299. doi: 10.1136/sti.75.5.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clutton-Brock T. H., Gaynor D., Kansky R., MacColl A. D., McIlrath G., Chadwick P., Brotherton P. N., O'Riain J. M., Manser M., Skinner J. D. Costs of cooperative behaviour in suricates (Suricata suricatta). Proc Biol Sci. 1998 Feb 7;265(1392):185–190. doi: 10.1098/rspb.1998.0281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson N. M., Garnett G. P. More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. Sex Transm Dis. 2000 Nov;27(10):600–609. doi: 10.1097/00007435-200011000-00008. [DOI] [PubMed] [Google Scholar]
  7. Frank S. A. A kin selection model for the evolution of virulence. Proc Biol Sci. 1992 Dec 22;250(1329):195–197. doi: 10.1098/rspb.1992.0149. [DOI] [PubMed] [Google Scholar]
  8. Friedman S. R., Kottiri B. J., Neaigus A., Curtis R., Vermund S. H., Des Jarlais D. C. Network-related mechanisms may help explain long-term HIV-1 seroprevalence levels that remain high but do not approach population-group saturation. Am J Epidemiol. 2000 Nov 15;152(10):913–922. doi: 10.1093/aje/152.10.913. [DOI] [PubMed] [Google Scholar]
  9. Gog J. R., Swinton J. A status-based approach to multiple strain dynamics. J Math Biol. 2002 Feb;44(2):169–184. doi: 10.1007/s002850100120. [DOI] [PubMed] [Google Scholar]
  10. Keeling M. J. The effects of local spatial structure on epidemiological invasions. Proc Biol Sci. 1999 Apr 22;266(1421):859–867. doi: 10.1098/rspb.1999.0716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keeling M. Evolutionary trade-offs at two time-scales: competition versus persistence. Proc Biol Sci. 2000 Feb 22;267(1441):385–391. doi: 10.1098/rspb.2000.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klovdahl A. S., Potterat J. J., Woodhouse D. E., Muth J. B., Muth S. Q., Darrow W. W. Social networks and infectious disease: the Colorado Springs Study. Soc Sci Med. 1994 Jan;38(1):79–88. doi: 10.1016/0277-9536(94)90302-6. [DOI] [PubMed] [Google Scholar]
  13. Klovdahl A. S. Social networks and the spread of infectious diseases: the AIDS example. Soc Sci Med. 1985;21(11):1203–1216. doi: 10.1016/0277-9536(85)90269-2. [DOI] [PubMed] [Google Scholar]
  14. Kuperman M., Abramson G. Small world effect in an epidemiological model. Phys Rev Lett. 2001 Mar 26;86(13):2909–2912. doi: 10.1103/PhysRevLett.86.2909. [DOI] [PubMed] [Google Scholar]
  15. Levin S. A., Durrett R. From individuals to epidemics. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1615–1621. doi: 10.1098/rstb.1996.0145. [DOI] [PubMed] [Google Scholar]
  16. Liljeros F., Edling C. R., Amaral L. A., Stanley H. E., Aberg Y. The web of human sexual contacts. Nature. 2001 Jun 21;411(6840):907–908. doi: 10.1038/35082140. [DOI] [PubMed] [Google Scholar]
  17. Messenger S. L., Molineux I. J., Bull J. J. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci. 1999 Feb 22;266(1417):397–404. doi: 10.1098/rspb.1999.0651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moore C., Newman M. E. Epidemics and percolation in small-world networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 May;61(5 Pt B):5678–5682. doi: 10.1103/physreve.61.5678. [DOI] [PubMed] [Google Scholar]
  19. Mosquera J., Adler F. R. Evolution of virulence: a unified framework for coinfection and superinfection. J Theor Biol. 1998 Dec 7;195(3):293–313. doi: 10.1006/jtbi.1998.0793. [DOI] [PubMed] [Google Scholar]
  20. Pastor-Satorras R., Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May 22;63(6 Pt 2):066117–066117. doi: 10.1103/PhysRevE.63.066117. [DOI] [PubMed] [Google Scholar]
  21. Potterat J. J., Phillips-Plummer L., Muth S. Q., Rothenberg R. B., Woodhouse D. E., Maldonado-Long T. S., Zimmerman H. P., Muth J. B. Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs. Sex Transm Infect. 2002 Apr;78 (Suppl 1):i159–i163. doi: 10.1136/sti.78.suppl_1.i159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Read A. F., Schrag S. J. The evolution of virulence: experimental evidence. Parasitol Today. 1991 Nov;7(11):296–297. doi: 10.1016/0169-4758(91)90261-l. [DOI] [PubMed] [Google Scholar]
  23. Rhodes C. J., Anderson R. M. Power laws governing epidemics in isolated populations. Nature. 1996 Jun 13;381(6583):600–602. doi: 10.1038/381600a0. [DOI] [PubMed] [Google Scholar]
  24. Rosenberg D., Moseley K., Kahn R., Kissinger P., Rice J., Kendall C., Coughlin S., Farley T. A. Networks of persons with syphilis and at risk for syphilis in Louisiana: evidence of core transmitters. Sex Transm Dis. 1999 Feb;26(2):108–114. doi: 10.1097/00007435-199902000-00009. [DOI] [PubMed] [Google Scholar]
  25. Wallinga J., Edmunds W. J., Kretzschmar M. Perspective: human contact patterns and the spread of airborne infectious diseases. Trends Microbiol. 1999 Sep;7(9):372–377. doi: 10.1016/s0966-842x(99)01546-2. [DOI] [PubMed] [Google Scholar]
  26. Watts D. J., Strogatz S. H. Collective dynamics of 'small-world' networks. Nature. 1998 Jun 4;393(6684):440–442. doi: 10.1038/30918. [DOI] [PubMed] [Google Scholar]
  27. Zekri N., Clerc J. P. Statistical and dynamical study of disease propagation in a small world network. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct 23;64(5 Pt 2):056115–056115. doi: 10.1103/PhysRevE.64.056115. [DOI] [PubMed] [Google Scholar]
  28. van Baalen M, Rand DA. The Unit of Selection in Viscous Populations and the Evolution of Altruism. J Theor Biol. 1998 Aug 21;193(4):631–648. doi: 10.1006/jtbi.1998.0730. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES