Abstract
Globally, the estimated total area planted with transgenic plants producing Bacillus thuringiensis (Bt) toxins was 12 million hectares in 2001. The risk of target pests becoming resistant to these toxins has led to the implementation of resistance-management strategies. The efficiency and sustainability of these strategies, including the high-dose plus refuge strategy currently recommended for North American maize, depend on the initial frequency of resistance alleles. In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest Chrysomela tremulae (Coleoptera: Chrysomelidae). We used the F(2) screen method developed for detecting resistance alleles in natural pest populations. At least three parents of the 270 lines tested were heterozygous for a major Bt resistance allele. We estimated mean resistance-allele frequency for the period 1999-2001 at 0.0037 (95% confidence interval = 0.00045-0.0080) with a detection probability of 90%. These results demonstrate that (i) the F(2) screen method can be used to detect major alleles conferring resistance to Bt-producing plants in insects and (ii) the initial frequency of alleles conferring resistance to Bt toxin can be close to the highest theoretical values that are expected prior to the use of Bt plants if considering fitness costs and typical mutation rates.
Full Text
The Full Text of this article is available as a PDF (236.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alstad D. N., Andow D. A. Managing the evolution of insect resistance to transgenic plants. Science. 1995 Jun 30;268(5219):1894–1896. doi: 10.1126/science.268.5219.1894. [DOI] [PubMed] [Google Scholar]
- Andow D. A., Olson D. M., Hellmich R. L., Alstad D. N., Hutchison W. D. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J Econ Entomol. 2000 Feb;93(1):26–30. doi: 10.1603/0022-0493-93.1.26. [DOI] [PubMed] [Google Scholar]
- Andreev D., Kreitman M., Phillips T. W., Beeman R. W., ffrench-Constant R. H. Multiple origins of cyclodiene insecticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae). J Mol Evol. 1999 May;48(5):615–624. doi: 10.1007/pl00006504. [DOI] [PubMed] [Google Scholar]
- Bentur J. S., Andow D. A., Cohen M. B., Romena A. M., Gould F. Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas (Lepidoptera: Pyralidae). J Econ Entomol. 2000 Oct;93(5):1515–1521. doi: 10.1603/0022-0493-93.5.1515. [DOI] [PubMed] [Google Scholar]
- Bourguet D., Genissel A., Raymond M. Insecticide resistance and dominance levels. J Econ Entomol. 2000 Dec;93(6):1588–1595. doi: 10.1603/0022-0493-93.6.1588. [DOI] [PubMed] [Google Scholar]
- Carrière Y., Tabashnik B. E. Reversing insect adaptation to transgenic insecticidal plants. Proc Biol Sci. 2001 Jul 22;268(1475):1475–1480. doi: 10.1098/rspb.2001.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coustau C, Chevillon C, ffrench-Constant R. Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol. 2000 Sep;15(9):378–383. doi: 10.1016/s0169-5347(00)01929-7. [DOI] [PubMed] [Google Scholar]
- Ferré Juan, Van Rie Jeroen. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol. 2002;47:501–533. doi: 10.1146/annurev.ento.47.091201.145234. [DOI] [PubMed] [Google Scholar]
- Ffrench-Constant R. H. The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol. 1994 Apr;24(4):335–345. doi: 10.1016/0965-1748(94)90026-4. [DOI] [PubMed] [Google Scholar]
- Georghiou G. P., Taylor C. E. Operational influences in the evolution of insecticide resistance. J Econ Entomol. 1977 Oct;70(5):653–658. doi: 10.1093/jee/70.5.653. [DOI] [PubMed] [Google Scholar]
- Gould F., Anderson A., Jones A., Sumerford D., Heckel D. G., Lopez J., Micinski S., Leonard R., Laster M. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3519–3523. doi: 10.1073/pnas.94.8.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol. 1998;43:701–726. doi: 10.1146/annurev.ento.43.1.701. [DOI] [PubMed] [Google Scholar]
- Guillemaud T., Rooker S., Pasteur N., Raymond M. Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data. Heredity (Edinb) 1996 Nov;77(Pt 5):535–543. doi: 10.1038/hdy.1996.181. [DOI] [PubMed] [Google Scholar]
- Génissel A., Viard F., Bourguet D. Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula x .P. tremuloides. Hereditas. 2000;133(2):85–93. doi: 10.1111/j.1601-5223.2000.00085.x. [DOI] [PubMed] [Google Scholar]
- Iriarte J., Porcar M., Lecadet M., Caballero P. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr Microbiol. 2000 Jun;40(6):402–408. doi: 10.1007/s002840010078. [DOI] [PubMed] [Google Scholar]
- Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
- Roush R. T., McKenzie J. A. Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol. 1987;32:361–380. doi: 10.1146/annurev.en.32.010187.002045. [DOI] [PubMed] [Google Scholar]
- Smith R. A., Couche G. A. The Phylloplane as a Source of Bacillus thuringiensis Variants. Appl Environ Microbiol. 1991 Jan;57(1):311–315. doi: 10.1128/aem.57.1.311-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venette R. C., Hutchison W. D., Andow D. A. An in-field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. J Econ Entomol. 2000 Aug;93(4):1055–1064. doi: 10.1603/0022-0493-93.4.1055. [DOI] [PubMed] [Google Scholar]
- Venette Robert C., Moon Roger D., Hutchison William D. Strategies and statistics of sampling for rare individuals. Annu Rev Entomol. 2002;47:143–174. doi: 10.1146/annurev.ento.47.091201.145147. [DOI] [PubMed] [Google Scholar]
- Wolfenbarger L. L., Phifer P. R. The ecological risks and benefits of genetically engineered plants. Science. 2000 Dec 15;290(5499):2088–2093. doi: 10.1126/science.290.5499.2088. [DOI] [PubMed] [Google Scholar]
- Zhao Jian-Zhou, Li Ya-Xin, Collins Hilda L., Shelton Anthony M. Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol. 2002 Feb;95(1):14–21. doi: 10.1603/0022-0493-95.1.14. [DOI] [PubMed] [Google Scholar]