Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Apr 22;270(1517):843–848. doi: 10.1098/rspb.2002.2295

The influence of cellular physiology on the initiation of mutational pathways in Escherichia coli populations.

Lucinda Notley-McRobb 1, Shona Seeto 1, Thomas Ferenci 1
PMCID: PMC1691312  PMID: 12737663

Abstract

The factors affecting the direction of evolutionary pathways and the reproducibility of adaptive responses were investigated under closely related but non-identical conditions. Replicate chemostat cultures of Escherichia coli were compared when adapting to partial or severe glucose limitation. Four independent populations used a reproducible sequence of early mutational changes under both conditions, with rpoS mutations always occurring first before mgl. However, there were interesting differences in the timing of mutational sweeps: rpoS mutations appeared in a clock-like fashion under both partial and severe glucose limitation, while mgl sweeps arose under both conditions but at different times. Interestingly, malT and mlc mutations appeared only under severe limitation. Even though the ancestors were genotypically identical, the semi-differentiated properties of bacteria growing with mild or severe glucose limitation sent the populations in characteristic directions. Mutation supply and the fitness contribution of mutations were estimated and demonstrated to be potential influences in the choice of particular adaptation pathways under severe and mild glucose limitation. Predicting all the mutations fixed in adapting populations is beyond our current understanding of evolutionary processes, but the interplay between ancestor physiology and the initiation of adaptation pathways is demonstrated and definable in bacterial populations.

Full Text

The Full Text of this article is available as a PDF (255.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arjan J. A., Visser M., Zeyl C. W., Gerrish P. J., Blanchard J. L., Lenski R. E. Diminishing returns from mutation supply rate in asexual populations. Science. 1999 Jan 15;283(5400):404–406. doi: 10.1126/science.283.5400.404. [DOI] [PubMed] [Google Scholar]
  2. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  3. Death A., Ferenci T. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res Microbiol. 1993 Sep;144(7):529–537. doi: 10.1016/0923-2508(93)90002-j. [DOI] [PubMed] [Google Scholar]
  4. Death A., Notley L., Ferenci T. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol. 1993 Mar;175(5):1475–1483. doi: 10.1128/jb.175.5.1475-1483.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dykhuizen D. E., Hartl D. L. Selection in chemostats. Microbiol Rev. 1983 Jun;47(2):150–168. doi: 10.1128/mr.47.2.150-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferenci T. Hungry bacteria--definition and properties of a nutritional state. Environ Microbiol. 2001 Oct;3(10):605–611. doi: 10.1046/j.1462-2920.2001.00238.x. [DOI] [PubMed] [Google Scholar]
  7. Ferenci T. Regulation by nutrient limitation. Curr Opin Microbiol. 1999 Apr;2(2):208–213. doi: 10.1016/S1369-5274(99)80036-8. [DOI] [PubMed] [Google Scholar]
  8. Foster P. L. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet. 1999;33:57–88. doi: 10.1146/annurev.genet.33.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartl D., Dykhuizen D. A selectively driven molecular clock. Nature. 1979 Sep 20;281(5728):230–231. doi: 10.1038/281230a0. [DOI] [PubMed] [Google Scholar]
  10. Helling R. B., Vargas C. N., Adams J. Evolution of Escherichia coli during growth in a constant environment. Genetics. 1987 Jul;116(3):349–358. doi: 10.1093/genetics/116.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lenski R. E., Travisano M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808–6814. doi: 10.1073/pnas.91.15.6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levin B. R., Perrot V., Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 2000 Mar;154(3):985–997. doi: 10.1093/genetics/154.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Manch K., Notley-McRobb L., Ferenci T. Mutational adaptation of Escherichia coli to glucose limitation involves distinct evolutionary pathways in aerobic and oxygen-limited environments. Genetics. 1999 Sep;153(1):5–12. doi: 10.1093/genetics/153.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mao E. F., Lane L., Lee J., Miller J. H. Proliferation of mutators in A cell population. J Bacteriol. 1997 Jan;179(2):417–422. doi: 10.1128/jb.179.2.417-422.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKenzie G. J., Rosenberg S. M. Adaptive mutations, mutator DNA polymerases and genetic change strategies of pathogens. Curr Opin Microbiol. 2001 Oct;4(5):586–594. doi: 10.1016/s1369-5274(00)00255-1. [DOI] [PubMed] [Google Scholar]
  16. NOVICK A., SZILARD L. Experiments on spontaneous and chemically induced mutations of bacteria growing in the Chemostat. Cold Spring Harb Symp Quant Biol. 1951;16:337–343. doi: 10.1101/sqb.1951.016.01.025. [DOI] [PubMed] [Google Scholar]
  17. Notley-McRobb L., Ferenci T. Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol. 1999 Feb;1(1):33–43. doi: 10.1046/j.1462-2920.1999.00002.x. [DOI] [PubMed] [Google Scholar]
  18. Notley-McRobb L., Ferenci T. Experimental analysis of molecular events during mutational periodic selections in bacterial evolution. Genetics. 2000 Dec;156(4):1493–1501. doi: 10.1093/genetics/156.4.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Notley-McRobb L., Ferenci T. The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol. 1999 Feb;1(1):45–52. doi: 10.1046/j.1462-2920.1999.00003.x. [DOI] [PubMed] [Google Scholar]
  20. Notley-McRobb Lucinda, King Thea, Ferenci Thomas. rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol. 2002 Feb;184(3):806–811. doi: 10.1128/JB.184.3.806-811.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Notley-McRobb Lucinda, Pinto Rachel, Seeto Shona, Ferenci Thomas. Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation. J Bacteriol. 2002 Feb;184(3):739–745. doi: 10.1128/JB.184.3.739-745.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Notley L., Ferenci T. Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli. Mol Microbiol. 1995 Apr;16(1):121–129. doi: 10.1111/j.1365-2958.1995.tb02397.x. [DOI] [PubMed] [Google Scholar]
  23. Reynolds M. G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics. 2000 Dec;156(4):1471–1481. doi: 10.1093/genetics/156.4.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
  25. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997 Jun 12;387(6634):700–702. doi: 10.1038/42696. [DOI] [PubMed] [Google Scholar]
  26. Treves D. S., Manning S., Adams J. Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol. 1998 Jul;15(7):789–797. doi: 10.1093/oxfordjournals.molbev.a025984. [DOI] [PubMed] [Google Scholar]
  27. Wick L. M., Quadroni M., Egli T. Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol. 2001 Sep;3(9):588–599. doi: 10.1046/j.1462-2920.2001.00231.x. [DOI] [PubMed] [Google Scholar]
  28. Wright B. E. The effect of the stringent response on mutation rates in Escherichia coli K-12. Mol Microbiol. 1996 Jan;19(2):213–219. doi: 10.1046/j.1365-2958.1996.367892.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12737663s01.pdf (197KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES