Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Apr 22;270(1517):849–858. doi: 10.1098/rspb.2002.2316

Estimating average cellular turnover from 5-bromo-2'-deoxyuridine (BrdU) measurements.

Rob J De Boer 1, Hiroshi Mohri 1, David D Ho 1, Alan S Perelson 1
PMCID: PMC1691317  PMID: 12737664

Abstract

Cellular turnover rates in the immune system can be determined by labelling dividing cells with 5-bromo-2'-deoxyuridine (BrdU) or deuterated glucose ((2)H-glucose). To estimate the turnover rate from such measurements one has to fit a particular mathematical model to the data. The biological assumptions underlying various models developed for this purpose are controversial. Here, we fit a series of different models to BrdU data on CD4(+) T cells from SIV(-) and SIV(+) rhesus macaques. We first show that the parameter estimates obtained using these models depend strongly on the details of the model. To resolve this lack of generality we introduce a new parameter for each model, the 'average turnover rate', defined as the cellular death rate averaged over all subpopulations in the model. We show that very different models yield similar estimates of the average turnover rate, i.e. ca. 1% day(-1) in uninfected monkeys and ca. 2% day(-1) in SIV-infected monkeys. Thus, we show that one can use BrdU data from a possibly heterogeneous population of cells to estimate the average turnover rate of that population in a robust manner.

Full Text

The Full Text of this article is available as a PDF (228.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996 Apr 5;272(5258):54–60. doi: 10.1126/science.272.5258.54. [DOI] [PubMed] [Google Scholar]
  2. Asquith Becca, Debacq Christophe, Macallan Derek C., Willems Luc, Bangham Charles R. M. Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol. 2002 Dec;23(12):596–601. doi: 10.1016/s1471-4906(02)02337-2. [DOI] [PubMed] [Google Scholar]
  3. Bajénoff Marc, Wurtz Olivier, Guerder Sylvie. Repeated antigen exposure is necessary for the differentiation, but not the initial proliferation, of naive CD4(+) T cells. J Immunol. 2002 Feb 15;168(4):1723–1729. doi: 10.4049/jimmunol.168.4.1723. [DOI] [PubMed] [Google Scholar]
  4. Bonhoeffer S., Mohri H., Ho D., Perelson A. S. Quantification of cell turnover kinetics using 5-bromo-2'-deoxyuridine. J Immunol. 2000 May 15;164(10):5049–5054. doi: 10.4049/jimmunol.164.10.5049. [DOI] [PubMed] [Google Scholar]
  5. Clark D. R., de Boer R. J., Wolthers K. C., Miedema F. T cell dynamics in HIV-1 infection. Adv Immunol. 1999;73:301–327. doi: 10.1016/s0065-2776(08)60789-0. [DOI] [PubMed] [Google Scholar]
  6. Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: Historical perspectives, histochemical methods and cell kinetics. Histochem J. 1995 May;27(5):339–369. [PubMed] [Google Scholar]
  7. Foulds Kathryn E., Zenewicz Lauren A., Shedlock Devon J., Jiang Jiu, Troy Amy E., Shen Hao. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol. 2002 Feb 15;168(4):1528–1532. doi: 10.4049/jimmunol.168.4.1528. [DOI] [PubMed] [Google Scholar]
  8. Förster I., Rajewsky K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4781–4784. doi: 10.1073/pnas.87.12.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Förster I., Vieira P., Rajewsky K. Flow cytometric analysis of cell proliferation dynamics in the B cell compartment of the mouse. Int Immunol. 1989;1(4):321–331. doi: 10.1093/intimm/1.4.321. [DOI] [PubMed] [Google Scholar]
  10. Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science. 1982 Oct 29;218(4571):474–475. doi: 10.1126/science.7123245. [DOI] [PubMed] [Google Scholar]
  11. Grossman Zvi, Meier-Schellersheim Martin, Sousa Ana E., Victorino Rui M. M., Paul William E. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med. 2002 Apr;8(4):319–323. doi: 10.1038/nm0402-319. [DOI] [PubMed] [Google Scholar]
  12. Hellerstein M. K. Measurement of T-cell kinetics: recent methodologic advances. Immunol Today. 1999 Oct;20(10):438–441. doi: 10.1016/s0167-5699(99)01529-7. [DOI] [PubMed] [Google Scholar]
  13. Hellerstein M., Hanley M. B., Cesar D., Siler S., Papageorgopoulos C., Wieder E., Schmidt D., Hoh R., Neese R., Macallan D. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med. 1999 Jan;5(1):83–89. doi: 10.1038/4772. [DOI] [PubMed] [Google Scholar]
  14. Kovacs J. A., Lempicki R. A., Sidorov I. A., Adelsberger J. W., Herpin B., Metcalf J. A., Sereti I., Polis M. A., Davey R. T., Tavel J. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J Exp Med. 2001 Dec 17;194(12):1731–1741. doi: 10.1084/jem.194.12.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee William T., Pasos Gregory, Cecchini Luiza, Mittler James N. Continued antigen stimulation is not required during CD4(+) T cell clonal expansion. J Immunol. 2002 Feb 15;168(4):1682–1689. doi: 10.4049/jimmunol.168.4.1682. [DOI] [PubMed] [Google Scholar]
  16. Macallan D. C., Fullerton C. A., Neese R. A., Haddock K., Park S. S., Hellerstein M. K. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):708–713. doi: 10.1073/pnas.95.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Michie C. A., McLean A., Alcock C., Beverley P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992 Nov 19;360(6401):264–265. doi: 10.1038/360264a0. [DOI] [PubMed] [Google Scholar]
  18. Mohri H., Bonhoeffer S., Monard S., Perelson A. S., Ho D. D. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science. 1998 Feb 20;279(5354):1223–1227. doi: 10.1126/science.279.5354.1223. [DOI] [PubMed] [Google Scholar]
  19. Mohri H., Perelson A. S., Tung K., Ribeiro R. M., Ramratnam B., Markowitz M., Kost R., Hurley A., Weinberger L., Cesar D. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med. 2001 Nov 5;194(9):1277–1287. doi: 10.1084/jem.194.9.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Penit C., Vasseur F. Sequential events in thymocyte differentiation and thymus regeneration revealed by a combination of bromodeoxyuridine DNA labeling and antimitotic drug treatment. J Immunol. 1988 May 15;140(10):3315–3323. [PubMed] [Google Scholar]
  21. Ribeiro Ruy M., Mohri Hiroshi, Ho David D., Perelson Alan S. Modeling deuterated glucose labeling of T-lymphocytes. Bull Math Biol. 2002 Mar;64(2):385–405. doi: 10.1006/bulm.2001.0282. [DOI] [PubMed] [Google Scholar]
  22. Rocha B., Penit C., Baron C., Vasseur F., Dautigny N., Freitas A. A. Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs: minimal estimates of production and turnover rates of mature lymphocytes. Eur J Immunol. 1990 Aug;20(8):1697–1708. doi: 10.1002/eji.1830200812. [DOI] [PubMed] [Google Scholar]
  23. Schittek B., Rajewsky K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature. 1990 Aug 23;346(6286):749–751. doi: 10.1038/346749a0. [DOI] [PubMed] [Google Scholar]
  24. Steinmann G. G., Klaus B., Müller-Hermelink H. K. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol. 1985 Nov;22(5):563–575. doi: 10.1111/j.1365-3083.1985.tb01916.x. [DOI] [PubMed] [Google Scholar]
  25. Tough D. F., Sprent J. Lifespan of gamma/delta T cells. J Exp Med. 1998 Feb 2;187(3):357–365. doi: 10.1084/jem.187.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tough D. F., Sprent J. Turnover of naive- and memory-phenotype T cells. J Exp Med. 1994 Apr 1;179(4):1127–1135. doi: 10.1084/jem.179.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zimmerman C., Brduscha-Riem K., Blaser C., Zinkernagel R. M., Pircher H. Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. J Exp Med. 1996 Apr 1;183(4):1367–1375. doi: 10.1084/jem.183.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES