Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Apr 22;270(1517):827–833. doi: 10.1098/rspb.2002.2314

No slave to sex.

Isabelle Schön 1, Koen Martens 1
PMCID: PMC1691318  PMID: 12737661

Abstract

Fully asexual lineages cannot purge accumulating mutations from their genome through recombination. In ancient asexuals that have persisted without sex for millions of years, this should lead to high allelic divergences (the 'Meselson effect') as has been shown for bdelloid rotifers. Homogenizing mechanisms can counter this effect, resulting in low genetic diversity within and between individuals. Here, we show that the ancient asexual ostracod species Darwinula stevensoni has very low nucleotide sequence divergence in three nuclear regions. Differences in genetic diversity between embryos and adults furthermore indicate that up to half of the observed genetic changes in adults can be caused by somatic mutations. Likelihood permutation tests confirm the presence of gene conversion in the multi-copy internal transcribed spacer sequence, but reject rare or cryptic forms of sex as a general explanation for the low genetic diversity in D. stevensoni. Other special mechanisms (such as highly efficient DNA repair) might have been selected for in this ancient asexual to overcome the mutational load and Muller's ratchet. In this case, our data support these hypotheses on the prevalence of sex, even if the two extant ancient asexual groups (bdelloids and darwinulids) seem to follow opposite evolutionary strategies.

Full Text

The Full Text of this article is available as a PDF (181.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benevolenskaya E. V., Kogan G. L., Tulin A. V., Philipp D., Gvozdev V. A. Segmented gene conversion as a mechanism of correction of 18S rRNA pseudogene located outside of rDNA cluster in D. melanogaster. J Mol Evol. 1997 Jun;44(6):646–651. doi: 10.1007/pl00006188. [DOI] [PubMed] [Google Scholar]
  3. Betrán E., Rozas J., Navarro A., Barbadilla A. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997 May;146(1):89–99. doi: 10.1093/genetics/146.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley R. D., Hillis D. M. Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol. 1997 May;14(5):592–593. doi: 10.1093/oxfordjournals.molbev.a025797. [DOI] [PubMed] [Google Scholar]
  5. Butlin RK. Virgin rotifers. Trends Ecol Evol. 2000 Oct 1;15(10):389–390. doi: 10.1016/s0169-5347(00)01937-6. [DOI] [PubMed] [Google Scholar]
  6. Butlin Roger. Evolution of sex: The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet. 2002 Apr;3(4):311–317. doi: 10.1038/nrg749. [DOI] [PubMed] [Google Scholar]
  7. Charles J. P., Chihara C., Nejad S., Riddiford L. M. A cluster of cuticle protein genes of Drosophila melanogaster at 65A: sequence, structure and evolution. Genetics. 1997 Nov;147(3):1213–1224. doi: 10.1093/genetics/147.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuertes Aguilar J., Rosselló J. A., Nieto Feliner G. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol Ecol. 1999 Aug;8(8):1341–1346. doi: 10.1046/j.1365-294x.1999.00690.x. [DOI] [PubMed] [Google Scholar]
  9. Gandolfi A., Bonilauri P., Rossi V., Menozzi P. Intraindividual and intraspecies variability of ITS1 sequences in the ancient asexual Darwinula stevensoni (Crustacea: Ostracoda). Heredity (Edinb) 2001 Oct;87(Pt 4):449–455. doi: 10.1046/j.1365-2540.2001.00927.x. [DOI] [PubMed] [Google Scholar]
  10. Haigh J. The accumulation of deleterious genes in a population--Muller's Ratchet. Theor Popul Biol. 1978 Oct;14(2):251–267. doi: 10.1016/0040-5809(78)90027-8. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  12. Haubold Bernhard, Kroymann Jürgen, Ratzka Andreas, Mitchell-Olds Thomas, Wiehe Thomas. Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics. 2002 Jul;161(3):1269–1278. doi: 10.1093/genetics/161.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. D., Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000 Jul 3;19(13):3398–3407. doi: 10.1093/emboj/19.13.3398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  15. Langley C. H., Lazzaro B. P., Phillips W., Heikkinen E., Braverman J. M. Linkage disequilibria and the site frequency spectra in the su(s) and su(w(a)) regions of the Drosophila melanogaster X chromosome. Genetics. 2000 Dec;156(4):1837–1852. doi: 10.1093/genetics/156.4.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lazzaro B. P., Clark A. G. Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster. Genetics. 2001 Oct;159(2):659–671. doi: 10.1093/genetics/159.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LeDoux S. P., Wilson G. L., Beecham E. J., Stevnsner T., Wassermann K., Bohr V. A. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis. 1992 Nov;13(11):1967–1973. doi: 10.1093/carcin/13.11.1967. [DOI] [PubMed] [Google Scholar]
  18. Lynch M., Bürger R., Butcher D., Gabriel W. The mutational meltdown in asexual populations. J Hered. 1993 Sep-Oct;84(5):339–344. doi: 10.1093/oxfordjournals.jhered.a111354. [DOI] [PubMed] [Google Scholar]
  19. MULLER H. J. THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. Mutat Res. 1964 May;106:2–9. doi: 10.1016/0027-5107(64)90047-8. [DOI] [PubMed] [Google Scholar]
  20. Mark Welch D. B., Meselson M. S. Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci U S A. 2001 May 29;98(12):6720–6724. doi: 10.1073/pnas.111144598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mark Welch D., Meselson M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 2000 May 19;288(5469):1211–1215. doi: 10.1126/science.288.5469.1211. [DOI] [PubMed] [Google Scholar]
  22. McVean Gil, Awadalla Philip, Fearnhead Paul. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics. 2002 Mar;160(3):1231–1241. doi: 10.1093/genetics/160.3.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Osman F., Subramani S. Double-strand break-induced recombination in eukaryotes. Prog Nucleic Acid Res Mol Biol. 1998;58:263–299. doi: 10.1016/s0079-6603(08)60039-2. [DOI] [PubMed] [Google Scholar]
  24. Otto S. P., Jarne P. Evolution. Haploids--hapless or happening? Science. 2001 Jun 29;292(5526):2441–2443. doi: 10.1126/science.1062890. [DOI] [PubMed] [Google Scholar]
  25. doi: 10.1098/rspb.1998.0287. [DOI] [PMC free article] [Google Scholar]
  26. Päbo S., Irwin D. M., Wilson A. C. DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem. 1990 Mar 15;265(8):4718–4721. [PubMed] [Google Scholar]
  27. Rourke I. J., East P. D. Evidence for gene conversion between tandemly duplicated cytoplasmic actin genes of Helicoverpa armigera (Lepidoptera:Noctuidae) J Mol Evol. 1997 Feb;44(2):169–177. doi: 10.1007/pl00006133. [DOI] [PubMed] [Google Scholar]
  28. Schön I. PCR primers and conditions for nonmarine ostracods. Biotechniques. 2001 Nov;31(5):1012–passim. doi: 10.2144/01315bm07. [DOI] [PubMed] [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang S., Magoulas C., Hickey D. Concerted evolution within a trypsin gene cluster in Drosophila. Mol Biol Evol. 1999 Sep;16(9):1117–1124. doi: 10.1093/oxfordjournals.molbev.a026202. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12737661s01.pdf (45.3KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES