Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 May 7;270(1518):887–896. doi: 10.1098/rspb.2002.2297

Structural rRNA characters support monophyly of raptorial limbs and paraphyly of limb specialization in water fleas.

Timothy D Swain 1, Derek J Taylor 1
PMCID: PMC1691322  PMID: 12803902

Abstract

The evolutionary success of arthropods has been attributed partly to the diversity of their limb morphologies. Large morphological diversity and increased specialization are observed in water flea (Cladocera) limbs, but it is unclear whether the increased limb specialization in different cladoceran orders is the result of shared ancestry or parallel evolution. We inferred a robust among-order cladoceran phylogeny using small-subunit and large-subunit rRNA nuclear gene sequences, signature sequence regions, novel stem-loops and secondary structure morphometrics to assess the phylogenetic distribution of limb specialization. The sequence-based and structural rRNA morphometric phylogenies were congruent and suggested monophyly of orders with raptorial limbs, but paraphyly of orders with reduced numbers of specialized limbs. These results highlight the utility of complex molecular structural characters in resolving ancient rapid radiations.

Full Text

The Full Text of this article is available as a PDF (255.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billoud B., Guerrucci M. A., Masselot M., Deutsch J. S. Cirripede phylogeny using a novel approach: molecular morphometrics. Mol Biol Evol. 2000 Oct;17(10):1435–1445. doi: 10.1093/oxfordjournals.molbev.a026244. [DOI] [PubMed] [Google Scholar]
  2. Braband Anke, Richter Stefan, Hiesel Rudolf, Scholtz Gerhard. Phylogenetic relationships within the Phyllopoda (Crustacea, Branchiopoda) based on mitochondrial and nuclear markers. Mol Phylogenet Evol. 2002 Nov;25(2):229–244. doi: 10.1016/s1055-7903(02)00253-1. [DOI] [PubMed] [Google Scholar]
  3. Caetano-Anollés Gustavo. Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol. 2002 Mar;54(3):333–345. doi: 10.1007/s00239-001-0048-3. [DOI] [PubMed] [Google Scholar]
  4. Caetano-Anollés Gustavo. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res. 2002 Jun 1;30(11):2575–2587. doi: 10.1093/nar/30.11.2575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins L. J., Moulton V., Penny D. Use of RNA secondary structure for studying the evolution of RNase P and RNase MRP. J Mol Evol. 2000 Sep;51(3):194–204. doi: 10.1007/s002390010081. [DOI] [PubMed] [Google Scholar]
  6. Crease T. J., Colbourne J. K. The unusually long small-subunit ribosomal RNA of the crustacean, Daphnia pulex: sequence and predicted secondary structure. J Mol Evol. 1998 Mar;46(3):307–313. doi: 10.1007/pl00006307. [DOI] [PubMed] [Google Scholar]
  7. Crease T. J., Taylor D. J. The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. Mol Biol Evol. 1998 Nov;15(11):1430–1446. doi: 10.1093/oxfordjournals.molbev.a025871. [DOI] [PubMed] [Google Scholar]
  8. De Rijk P., De Wachter R. DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci. 1993 Dec;9(6):735–740. doi: 10.1093/bioinformatics/9.6.735. [DOI] [PubMed] [Google Scholar]
  9. De Rijk P., De Wachter R. RnaViz, a program for the visualisation of RNA secondary structure. Nucleic Acids Res. 1997 Nov 15;25(22):4679–4684. doi: 10.1093/nar/25.22.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Rijk P., Wuyts J., Van de Peer Y., Winkelmans T., De Wachter R. The European large subunit ribosomal RNA database. Nucleic Acids Res. 2000 Jan 1;28(1):177–178. doi: 10.1093/nar/28.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galant Ron, Carroll Sean B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature. 2002 Feb 6;415(6874):910–913. doi: 10.1038/nature717. [DOI] [PubMed] [Google Scholar]
  12. Gutell Robin R., Lee Jung C., Cannone Jamie J. The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol. 2002 Jun;12(3):301–310. doi: 10.1016/s0959-440x(02)00339-1. [DOI] [PubMed] [Google Scholar]
  13. Hillis D. M., Bull J. J., White M. E., Badgett M. R., Molineux I. J. Experimental phylogenetics: generation of a known phylogeny. Science. 1992 Jan 31;255(5044):589–592. doi: 10.1126/science.1736360. [DOI] [PubMed] [Google Scholar]
  14. Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
  15. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  16. Olesen J., Richter S., Scholtz G. The evolutionary transformation of phyllopodous to stenopodous limbs in the Branchiopoda (Crustacea)--is there a common mechanism for early limb development in arthropods? Int J Dev Biol. 2001 Dec;45(8):869–876. [PubMed] [Google Scholar]
  17. Omilian A. R., Taylor D. J. Rate acceleration and long-branch attraction in a conserved gene of cryptic daphniid (Crustacea) species. Mol Biol Evol. 2001 Dec;18(12):2201–2212. doi: 10.1093/oxfordjournals.molbev.a003767. [DOI] [PubMed] [Google Scholar]
  18. doi: 10.1098/rspb.1999.0707. [DOI] [PMC free article] [Google Scholar]
  19. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  20. Richter S., Braband A., Aladin N., Scholtz G. The phylogenetic relationships of "predatory water-fleas" (Cladocera: Onychopoda, Haplopoda) inferred from 12S rDNA. Mol Phylogenet Evol. 2001 Apr;19(1):105–113. doi: 10.1006/mpev.2000.0901. [DOI] [PubMed] [Google Scholar]
  21. Ronshaugen Matthew, McGinnis Nadine, McGinnis William. Hox protein mutation and macroevolution of the insect body plan. Nature. 2002 Feb 6;415(6874):914–917. doi: 10.1038/nature716. [DOI] [PubMed] [Google Scholar]
  22. Shiga Yasuhiro, Yasumoto Ryusuke, Yamagata Hideo, Hayashi Shigeo. Evolving role of Antennapedia protein in arthropod limb patterning. Development. 2002 Aug;129(15):3555–3561. doi: 10.1242/dev.129.15.3555. [DOI] [PubMed] [Google Scholar]
  23. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van de Peer Y., De Rijk P., Wuyts J., Winkelmans T., De Wachter R. The European small subunit ribosomal RNA database. Nucleic Acids Res. 2000 Jan 1;28(1):175–176. doi: 10.1093/nar/28.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williams T. A., Nagy L. M. Arthropod evolution: Brine shrimp add salt to the stew. Curr Biol. 1995 Dec 1;5(12):1330–1333. doi: 10.1016/s0960-9822(95)00261-2. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12803902s01.pdf (602.2KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES