Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 May 7;270(1518):897–904. doi: 10.1098/rspb.2003.2334

A private ultraviolet channel in visual communication.

Molly E Cummings 1, Gil G Rosenthal 1, Michael J Ryan 1
PMCID: PMC1691327  PMID: 12803903

Abstract

Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system.

Full Text

The Full Text of this article is available as a PDF (413.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cummings M. E., Partridge J. C. Visual pigments and optical habitats of surfperch (Embiotocidae) in the California kelp forest. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2001 Dec;187(11):875–889. doi: 10.1007/s00359-001-0258-6. [DOI] [PubMed] [Google Scholar]
  2. Douglas R. H., McGuigan C. M. The spectral transmission of freshwater teleost ocular media--an interspecific comparison and a guide to potential ultraviolet sensitivity. Vision Res. 1989;29(7):871–879. doi: 10.1016/0042-6989(89)90098-9. [DOI] [PubMed] [Google Scholar]
  3. Endler J. A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Res. 1991;31(3):587–608. doi: 10.1016/0042-6989(91)90109-i. [DOI] [PubMed] [Google Scholar]
  4. Ham W. T., Jr, Mueller H. A., Ruffolo J. J., Jr, Clarke A. M. Sensitivity of the retina to radiation damage as a function of wavelength. Photochem Photobiol. 1979 Apr;29(4):735–743. doi: 10.1111/j.1751-1097.1979.tb07759.x. [DOI] [PubMed] [Google Scholar]
  5. Ham W. T., Jr, Mueller H. A., Sliney D. H. Retinal sensitivity to damage from short wavelength light. Nature. 1976 Mar 11;260(5547):153–155. doi: 10.1038/260153a0. [DOI] [PubMed] [Google Scholar]
  6. Kleinschmidt J., Harosi F. I. Anion sensitivity and spectral tuning of cone visual pigments in situ. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9181–9185. doi: 10.1073/pnas.89.19.9181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lande R. Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721–3725. doi: 10.1073/pnas.78.6.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lloyd J. E., Wing S. R. Nocturnal aerial predation of fireflies by light-seeking fireflies. Science. 1983 Nov 11;222(4624):634–635. doi: 10.1126/science.222.4624.634. [DOI] [PubMed] [Google Scholar]
  9. Robert D., Amoroso J., Hoy R. R. The evolutionary convergence of hearing in a parasitoid fly and its cricket host. Science. 1992 Nov 13;258(5085):1135–1137. doi: 10.1126/science.1439820. [DOI] [PubMed] [Google Scholar]
  10. Rosenthal G. G., Evans C. S. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4431–4436. doi: 10.1073/pnas.95.8.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ryan M. J., Wagner W. E., Jr Asymmetries in mating preferences between species: female swordtails prefer heterospecific males. Science. 1987 May 1;236(4801):595–597. doi: 10.1126/science.236.4801.595. [DOI] [PubMed] [Google Scholar]
  12. Stoddard P. K. Predation enhances complexity in the evolution of electric fish signals. Nature. 1999 Jul 15;400(6741):254–256. doi: 10.1038/22301. [DOI] [PubMed] [Google Scholar]
  13. Thorpe A., Douglas R. H., Truscott R. J. Spectral transmission and short-wave absorbing pigments in the fish lens--I. Phylogenetic distribution and identity. Vision Res. 1993 Feb;33(3):289–300. doi: 10.1016/0042-6989(93)90085-b. [DOI] [PubMed] [Google Scholar]
  14. Tuttle M. D., Ryan M. J. Bat predation and the evolution of frog vocalizations in the neotropics. Science. 1981 Nov 6;214(4521):677–678. doi: 10.1126/science.214.4521.677. [DOI] [PubMed] [Google Scholar]
  15. Walls G. L., Judd H. D. THE INTRA-OCULAR COLOUR-FILTERS OF VERTEBRATES. Br J Ophthalmol. 1933 Nov;17(11):641–675. doi: 10.1136/bjo.17.11.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yokoyama R., Yokoyama S. Molecular characterization of a blue visual pigment gene in the fish Astyanax fasciatus. FEBS Lett. 1993 Nov 8;334(1):27–31. doi: 10.1016/0014-5793(93)81673-n. [DOI] [PubMed] [Google Scholar]
  17. Zigman S., Bagley S. J. Near ultraviolet light effects on dogfish retinal rods. Exp Eye Res. 1971 Jul;12(1):155–157. doi: 10.1016/0014-4835(71)90141-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES