Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 May 7;270(1518):929–933. doi: 10.1098/rspb.2002.2308

The scent of age.

Kazumi Osada 1, Kunio Yamazaki 1, Maryanne Curran 1, Judith Bard 1, Benjamin P C Smith 1, Gary K Beauchamp 1
PMCID: PMC1691329  PMID: 12803907

Abstract

In many species, older males are often preferred mates because they carry 'good' genes that account for their viability. How females discern a male's age is a matter of question. However, for animals that rely heavily on chemical communication there is some indication that an animal's age can be determined by its scent. To investigate whether there are changes in body odours with age, and if so their composition, mice were trained in a Y-maze to discriminate urine odours of donor mice of different ages: Adult (3-10 months old) and Aged (more than 17 months old). Trained mice could discriminate between these two age groups by odour alone. To determine the chemical basis for these discriminations, studies were performed using gas chromatography and mass spectrometry. These analyses demonstrated differences in the ratio of urinary volatiles with age. The most prominent differences involved significantly greater amounts of 2-phenylacetamide and significantly lower amounts of methylbutyric acids in Aged animals relative to Adult animals. Fractionating and manipulating the levels of these compounds in the urine demonstrated that the mice can distinguish age based on variation in amounts of these specific compounds in the combined urine.

Full Text

The Full Text of this article is available as a PDF (130.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks R., Kemp D. J. Can older males deliver the good genes? Trends Ecol Evol. 2001 Jun 1;16(6):308–313. doi: 10.1016/s0169-5347(01)02147-4. [DOI] [PubMed] [Google Scholar]
  2. Goodrich B. S., Mykytowycz R. Individual and sex differences in the chemical composition of pheromone-like substances from the skin glands of the rabbit, Oryctolagus cuniculus. J Mammal. 1972 Aug;53(3):540–548. [PubMed] [Google Scholar]
  3. Haze S., Gozu Y., Nakamura S., Kohno Y., Sawano K., Ohta H., Yamazaki K. 2-Nonenal newly found in human body odor tends to increase with aging. J Invest Dermatol. 2001 Apr;116(4):520–524. doi: 10.1046/j.0022-202x.2001.01287.x. [DOI] [PubMed] [Google Scholar]
  4. Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Koyama H. Purification and characterization of a novel L-phenylalanine oxidase (Deaminating and decarboxylating) from Pseudomonas sp. P-501. J Biochem. 1982 Oct;92(4):1235–1240. doi: 10.1093/oxfordjournals.jbchem.a134041. [DOI] [PubMed] [Google Scholar]
  6. Lord J. M., Butcher S., Killampali V., Lascelles D., Salmon M. Neutrophil ageing and immunesenescence. Mech Ageing Dev. 2001 Sep 30;122(14):1521–1535. doi: 10.1016/s0047-6374(01)00285-8. [DOI] [PubMed] [Google Scholar]
  7. Marklová E. Where does indolylacrylic acid come from? Amino Acids. 1999;17(4):401–413. doi: 10.1007/BF01361665. [DOI] [PubMed] [Google Scholar]
  8. Matsumoto S., Okabe Y., Setoyama H., Takayama K., Ohtsuka J., Funahashi H., Imaoka A., Okada Y., Umesaki Y. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut. 1998 Jul;43(1):71–78. doi: 10.1136/gut.43.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mennella J. A., Beauchamp G. K. Maternal diet alters the sensory qualities of human milk and the nursling's behavior. Pediatrics. 1991 Oct;88(4):737–744. [PubMed] [Google Scholar]
  10. Mitsuoka T. Einfluss der Ernährung auf die Darmflora. Nahrung. 1984;28(6-7):619–625. doi: 10.1002/food.19840280616. [DOI] [PubMed] [Google Scholar]
  11. Mitsuya M., Mase T., Tsuchiya Y., Kawakami K., Hattori H., Kobayashi K., Ogino Y., Fujikawa T., Satoh A., Kimura T. J-104129, a novel muscarinic M3 receptor antagonist with high selectivity for M3 over M2 receptors. Bioorg Med Chem. 1999 Nov;7(11):2555–2567. doi: 10.1016/s0968-0896(99)00177-7. [DOI] [PubMed] [Google Scholar]
  12. Miyaji C., Watanabe H., Toma H., Akisaka M., Tomiyama K., Sato Y., Abo T. Functional alteration of granulocytes, NK cells, and natural killer T cells in centenarians. Hum Immunol. 2000 Sep;61(9):908–916. doi: 10.1016/s0198-8859(00)00153-1. [DOI] [PubMed] [Google Scholar]
  13. Miyashita K., Robinson A. B. Identification of compounds in mouse urine vapor by gas chromatography and mass spectrometry. Mech Ageing Dev. 1980 Jun;13(2):177–184. doi: 10.1016/0047-6374(80)90060-3. [DOI] [PubMed] [Google Scholar]
  14. Mohàcsi A., Kozlovszky B., Kiss I., Seres I., Fülöp T., Jr Neutrophils obtained from obliterative atherosclerotic patients exhibit enhanced resting respiratory burst and increased degranulation in response to various stimuli. Biochim Biophys Acta. 1996 Aug 23;1316(3):210–216. doi: 10.1016/0925-4439(96)00027-0. [DOI] [PubMed] [Google Scholar]
  15. Müller-Schwarze D. Pheromones in black-tailed deer (Odocoileus heminonus columbianus). Anim Behav. 1971 Feb;19(1):141–152. doi: 10.1016/s0003-3472(71)80149-5. [DOI] [PubMed] [Google Scholar]
  16. O'Keefe T. L., Williams G. T., Batista F. D., Neuberger M. S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med. 1999 Apr 19;189(8):1307–1313. doi: 10.1084/jem.189.8.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olsen R. L., Little C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J. 1983 Mar 1;209(3):781–787. doi: 10.1042/bj2090781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pesti L., Gordon H. A. Effects of age and isolation on the intestinal flora of mice. Gerontologia. 1973;19(3):153–161. doi: 10.1159/000211968. [DOI] [PubMed] [Google Scholar]
  19. Qiu H., Jun H. W. Solid-phase extraction and liquid chromatographic quantitation of insect repellent N,N-diethyl-m-toluamide in plasma. J Pharm Biomed Anal. 1996 Nov;15(2):241–250. doi: 10.1016/0731-7085(96)01828-6. [DOI] [PubMed] [Google Scholar]
  20. Rao S. S., Swamy R. V., Ramachandran P. K. Toxicity and metabolism of a new insect repellent N,N-diethylphenylacetamide in mice, rats and guinea pigs on cutaneous application. Toxicology. 1989 Sep;58(1):81–89. doi: 10.1016/0300-483x(89)90106-6. [DOI] [PubMed] [Google Scholar]
  21. Robinson A. B., Dirren H., Sheets A. Quantitative aging pattern in mouse urine vapor as measured by gas-liquid chromatography. Exp Gerontol. 1976;11(1-2):11–16. doi: 10.1016/0531-5565(76)90005-x. [DOI] [PubMed] [Google Scholar]
  22. Siegel S. F., Finegold D. N., Urban M. D., McVie R., Lee P. A. Premature pubarche: etiological heterogeneity. J Clin Endocrinol Metab. 1992 Feb;74(2):239–247. doi: 10.1210/jcem.74.2.1309831. [DOI] [PubMed] [Google Scholar]
  23. Singer A. G., Beauchamp G. K., Yamazaki K. Volatile signals of the major histocompatibility complex in male mouse urine. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2210–2214. doi: 10.1073/pnas.94.6.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Su T., Wu Y., Doughan B., Kane-Maguire K., Marlowe C. K., Kanter J. P., Woolfrey J., Huang B., Wong P., Sinha U. Design and synthesis of glycolic and mandelic acid derivatives as factor Xa inhibitors. Bioorg Med Chem Lett. 2001 Sep 3;11(17):2279–2282. doi: 10.1016/s0960-894x(01)00447-4. [DOI] [PubMed] [Google Scholar]
  25. Yamaguchi M., Yamazaki K., Beauchamp G. K., Bard J., Thomas L., Boyse E. A. Distinctive urinary odors governed by the major histocompatibility locus of the mouse. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5817–5820. doi: 10.1073/pnas.78.9.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES