Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 May 7;270(1518):935–941. doi: 10.1098/rspb.2002.2323

Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite.

Lukas Schärer 1, Peter Ladurner 1
PMCID: PMC1691333  PMID: 12803908

Abstract

Sex allocation theory for simultaneous hermaphrodites predicts an influence of the mating group size on sex allocation. Mating group size may depend on the size of the group in which an individual lives, or on the density, but studies to date have not distinguished between the two factors. We performed an experiment in which we raised a transparent simultaneous hermaphrodite, the flatworm Macrostomum sp., in different group sizes (pairs, triplets, quartets and octets) and in different enclosure sizes (small and large). This design allows us to differentiate between the effects of group size and density. After worms reached maturity we determined their reproductive allocation patterns from microscopic images taken in vivo. The results suggest that the mating group size is a function of the group size, and not of the density. They support the shift to higher male allocation in larger mating groups predicted by sex allocation theory. To our knowledge, this is the first study that unambiguously shows phenotypically plastic sex allocation in response to mating group size in a simultaneous hermaphrodite.

Full Text

The Full Text of this article is available as a PDF (246.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal A. F. Sexual selection and the maintenance of sexual reproduction. Nature. 2001 Jun 7;411(6838):692–695. doi: 10.1038/35079590. [DOI] [PubMed] [Google Scholar]
  2. Barton N. H., Charlesworth B. Why sex and recombination? Science. 1998 Sep 25;281(5385):1986–1990. [PubMed] [Google Scholar]
  3. Campbell DR. Experimental tests of sex-allocation theory in plants. Trends Ecol Evol. 2000 Jun;15(6):227–232. doi: 10.1016/s0169-5347(00)01872-3. [DOI] [PubMed] [Google Scholar]
  4. Charnov E. L. Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci U S A. 1979 May;76(5):2480–2484. doi: 10.1073/pnas.76.5.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doncaster C. P., Pound G. E., Cox S. J. The ecological cost of sex. Nature. 2000 Mar 16;404(6775):281–285. doi: 10.1038/35005078. [DOI] [PubMed] [Google Scholar]
  6. GUILLARD R. R., RYTHER J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962 Apr;8:229–239. doi: 10.1139/m62-029. [DOI] [PubMed] [Google Scholar]
  7. Ghiselin M. T. The evolution of hermaphroditism among animals. Q Rev Biol. 1969 Jun;44(2):189–208. doi: 10.1086/406066. [DOI] [PubMed] [Google Scholar]
  8. Hamilton W. D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science. 1967 Apr 28;156(3774):477–488. doi: 10.1126/science.156.3774.477. [DOI] [PubMed] [Google Scholar]
  9. Komdeur Jan, Pen Ido. Adaptive sex allocation in birds: the complexities of linking theory and practice. Philos Trans R Soc Lond B Biol Sci. 2002 Mar 29;357(1419):373–380. doi: 10.1098/rstb.2001.0927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ladurner P., Rieger R., Baguñ J. Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol. 2000 Oct 15;226(2):231–241. doi: 10.1006/dbio.2000.9867. [DOI] [PubMed] [Google Scholar]
  11. Siller S., Department of Zoology, University of Oxford, UK. steven.siller@zoo.ox.ac.uk Sexual selection and the maintenance of sex. Nature. 2001 Jun 7;411(6838):689–692. doi: 10.1038/35079578. [DOI] [PubMed] [Google Scholar]
  12. Warner R. R., Robertson D. R., Leigh E. G., Jr Sex change and sexual selection. Science. 1975 Nov 14;190(4215):633–638. doi: 10.1126/science.1188360. [DOI] [PubMed] [Google Scholar]
  13. West S. A., Reece S. E., Sheldon B. C. Sex ratios. Heredity (Edinb) 2002 Feb;88(2):117–124. doi: 10.1038/sj.hdy.6800018. [DOI] [PubMed] [Google Scholar]
  14. Zavras E. T., Roberts L. S. Developmental physiology of cestodes: characterization of putative crowding factors in Hymenolepis diminuta. J Parasitol. 1984 Dec;70(6):937–944. [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES