Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 May 22;270(1519):1061–1068. doi: 10.1098/rspb.2003.2343

Lizard threat display handicaps endurance.

Y Brandt 1
PMCID: PMC1691337  PMID: 12803896

Abstract

Honest-signalling theory asserts that threat displays reliably advertise attributes that influence fighting success. Endurance, as measured by treadmill performance, predicts the outcome of agonistic interactions among lizards. If threat displays in lizards function to advertise endurance capacity then variation in threat displays should correlate with endurance. I tested this prediction for the duration of threat posturing in male side-blotched lizards (Uta stansburiana) and examined whether threat displays act as quality handicaps, reliable signals that expend the attribute that is advertised. Individual variation in the duration of threat posturing correlated with endurance, while an experimental reduction of endurance diminished the duration of threat posturing. As expected of a quality handicap, endurance fell below baseline after display production. A restriction of aerobic metabolism can account for this effect. In threat posturing, lateral compression of the thorax may interfere with respiration or with circulation, limiting aerobic metabolism and causing a compensatory increase in anaerobic metabolism, thereby generating lactate and diminishing locomotor capacity. Concentrations of lactate measured after display production were higher than baseline, consistent with the proposed mechanism. By restricting aerobic metabolism, the threat posture can act as a quality handicap, simultaneously advertising and expending the endurance capacity of displaying lizards.

Full Text

The Full Text of this article is available as a PDF (189.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballintijn C. M. Functional anatomy and movement co-ordination of the respiratory pump of the carp (Cyprinus carpio L.). J Exp Biol. 1969 Jun;50(3):547–567. doi: 10.1242/jeb.50.3.547. [DOI] [PubMed] [Google Scholar]
  2. Briffa M., Elwood R. W. Decision rules, energy metabolism and vigour of hermit-crab fights. Proc Biol Sci. 2001 Sep 7;268(1478):1841–1848. doi: 10.1098/rspb.2001.1752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briffa M, Elwood RW. Analysis of the finescale timing of repeated signals: does shell rapping in hermit crabs signal stamina? Anim Behav. 2000 Jan;59(1):159–165. doi: 10.1006/anbe.1999.1273. [DOI] [PubMed] [Google Scholar]
  4. Briffa Mark, Elwood Robert W. Power of shell-rapping signals influences physiological costs and subsequent decisions during hermit crab fights. Proc Biol Sci. 2002 Nov 22;269(1507):2331–2336. doi: 10.1098/rspb.2002.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrier D. R. Lung ventilation during walking and running in four species of lizards. Exp Biol. 1987;47(1):33–42. [PubMed] [Google Scholar]
  6. Carrier D. R. Ventilatory action of the hypaxial muscles of the lizard Iguana iguana: a function of slow muscle. J Exp Biol. 1989 May;143:435–457. doi: 10.1242/jeb.143.1.435. [DOI] [PubMed] [Google Scholar]
  7. Carrier D. Activity of the hypaxial muscles during walking in the lizard Iguana iguana. J Exp Biol. 1990 Sep;152:453–470. doi: 10.1242/jeb.152.1.453. [DOI] [PubMed] [Google Scholar]
  8. Farmer C. G., Hicks J. W. Circulatory impairment induced by exercise in the lizard Iguana iguana. J Exp Biol. 2000 Sep;203(Pt 17):2691–2697. doi: 10.1242/jeb.203.17.2691. [DOI] [PubMed] [Google Scholar]
  9. Fitts R. H. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994 Jan;74(1):49–94. doi: 10.1152/physrev.1994.74.1.49. [DOI] [PubMed] [Google Scholar]
  10. Fitzstephens DM, Getty T. Colour, fat and social status in male damselflies, Calopteryx maculata. Anim Behav. 2000 Dec;60(6):851–855. doi: 10.1006/anbe.2000.1548. [DOI] [PubMed] [Google Scholar]
  11. Garland T., Jr, Else P. L. Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. Am J Physiol. 1987 Mar;252(3 Pt 2):R439–R449. doi: 10.1152/ajpregu.1987.252.3.R439. [DOI] [PubMed] [Google Scholar]
  12. Halperin JRP, Giri T, Elliott J, Dunham DW. Consequences of hyper-aggressiveness in Siamese fighting fish: cheaters seldom prospered. Anim Behav. 1998 Jan;55(1):87–96. doi: 10.1006/anbe.1997.0585. [DOI] [PubMed] [Google Scholar]
  13. Hasson O. Towards a General Theory of Biological Signaling. J Theor Biol. 1997 Mar 21;185(2):139–156. doi: 10.1006/jtbi.1996.0258. [DOI] [PubMed] [Google Scholar]
  14. Henderson L., Jones E., Freemantle M., Howard C. A., Jenkinson P., Lambert R., Mackay J., Marshall R., Wilcox P. Extended harvest times are not necessary for the detection of in vitro clastogens in regulatory cytogenetics studies. Mutagenesis. 1996 Jan;11(1):61–67. doi: 10.1093/mutage/11.1.61. [DOI] [PubMed] [Google Scholar]
  15. Klukowski M., Jenkinson N. M., Nelson C. E. Effects of testosterone on locomotor performance and growth in field-active northern fence lizards, Sceloporus undulatus hyacinthinus. Physiol Zool. 1998 Sep-Oct;71(5):506–514. doi: 10.1086/515949. [DOI] [PubMed] [Google Scholar]
  16. Leal M. Honest signalling during prey-predator interactions in the lizard Anolis cristatellus. Anim Behav. 1999 Sep;58(3):521–526. doi: 10.1006/anbe.1999.1181. [DOI] [PubMed] [Google Scholar]
  17. Leal M, Rodríguez-robles JA. Signalling displays during predator-prey interactions in a Puerto Rican anole, Anolis cristatellus. Anim Behav. 1997 Nov;54(5):1147–1154. doi: 10.1006/anbe.1997.0572. [DOI] [PubMed] [Google Scholar]
  18. Neat FC, Taylor AC, Huntingford FA. Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Anim Behav. 1998 Apr;55(4):875–882. doi: 10.1006/anbe.1997.0668. [DOI] [PubMed] [Google Scholar]
  19. Ottoni E. B. EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav Res Methods Instrum Comput. 2000 Aug;32(3):446–449. doi: 10.3758/bf03200814. [DOI] [PubMed] [Google Scholar]
  20. doi: 10.1098/rspb.1998.0459. [DOI] [PMC free article] [Google Scholar]
  21. Payne RJH. Gradually escalating fights and displays: the cumulative assessment model. Anim Behav. 1998 Sep;56(3):651–662. doi: 10.1006/anbe.1998.0835. [DOI] [PubMed] [Google Scholar]
  22. Schall J. J. Lizards infected with malaria: physiological and behavioral consequences. Science. 1982 Sep 10;217(4564):1057–1059. doi: 10.1126/science.7112113. [DOI] [PubMed] [Google Scholar]
  23. Sinervo B., Miles D. B., Frankino W. A., Klukowski M., DeNardo D. F. Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav. 2000 Dec;38(4):222–233. doi: 10.1006/hbeh.2000.1622. [DOI] [PubMed] [Google Scholar]
  24. Sneddon LU, Taylor AC, Huntingford FA. Metabolic consequences of agonistic behaviour: crab fights in declining oxygen tensions. Anim Behav. 1999 Feb;57(2):353–363. doi: 10.1006/anbe.1998.0982. [DOI] [PubMed] [Google Scholar]
  25. Taylor P. W., Hasson O., Clark D. L. Body postures and patterns as amplifiers of physical condition. Proc Biol Sci. 2000 May 7;267(1446):917–922. doi: 10.1098/rspb.2000.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wilson M. A., Gatten R. E., Jr Aerobic and anaerobic metabolism of paired male lizards (Anolis carolinensis). Physiol Behav. 1989 Dec;46(6):977–982. doi: 10.1016/0031-9384(89)90201-1. [DOI] [PubMed] [Google Scholar]
  27. Wilson M. A., Gatten R. E., Jr, Greenberg N. Glycolysis in Anolis carolinensis during agonistic encounters. Physiol Behav. 1990 Jul;48(1):139–142. doi: 10.1016/0031-9384(90)90274-8. [DOI] [PubMed] [Google Scholar]
  28. Zahavi A. Mate selection-a selection for a handicap. J Theor Biol. 1975 Sep;53(1):205–214. doi: 10.1016/0022-5193(75)90111-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES