Abstract
An aim of some vaccination programmes is to reduce the prevalence of an infectious disease and ultimately to eradicate it. We show that eradication success depends on the type of vaccine as well as on the vaccination coverage. Vaccines that reduce the parasite within-host growth rate select for higher parasite virulence and this evolution may both increase the prevalence of the disease and prevent disease eradication. By contrast, vaccines that reduce the probability of infection select against virulence and may lead more easily to eradication. In some cases, epidemiological feedback on parasite evolution yields an evolutionary bistable situation where, for intermediate vaccination coverage, parasites can evolve towards either high or low virulence, depending on the initial conditions. These results have practical implications for the design and use of imperfect vaccines in public- and animal-health programmes.
Full Text
The Full Text of this article is available as a PDF (134.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. M., May R. M. Coevolution of hosts and parasites. Parasitology. 1982 Oct;85(Pt 2):411–426. doi: 10.1017/s0031182000055360. [DOI] [PubMed] [Google Scholar]
- Anderson R. M., May R. M. Vaccination against rubella and measles: quantitative investigations of different policies. J Hyg (Lond) 1983 Apr;90(2):259–325. doi: 10.1017/s002217240002893x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Best S. M., Kerr P. J. Coevolution of host and virus: the pathogenesis of virulent and attenuated strains of myxoma virus in resistant and susceptible European rabbits. Virology. 2000 Feb 1;267(1):36–48. doi: 10.1006/viro.1999.0104. [DOI] [PubMed] [Google Scholar]
- Blower S. M., McLean A. R. Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco. Science. 1994 Sep 2;265(5177):1451–1454. doi: 10.1126/science.8073289. [DOI] [PubMed] [Google Scholar]
- Blower S., McLean A. Response. Science. 1995 Mar 3;267(5202):1252–1253. doi: 10.1126/science.267.5202.1252. [DOI] [PubMed] [Google Scholar]
- Bremermann H. J., Pickering J. A game-theoretical model of parasite virulence. J Theor Biol. 1983 Feb 7;100(3):411–426. doi: 10.1016/0022-5193(83)90438-1. [DOI] [PubMed] [Google Scholar]
- Dushoff J. Incorporating immunological ideas in epidemiological models. J Theor Biol. 1996 Jun 7;180(3):181–187. doi: 10.1006/jtbi.1996.0094. [DOI] [PubMed] [Google Scholar]
- Eshel I. On the founder effect and the evolution of altruistic traits: an ecogenetical approach. Theor Popul Biol. 1977 Jun;11(3):410–424. doi: 10.1016/0040-5809(77)90020-x. [DOI] [PubMed] [Google Scholar]
- Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
- Gandon S., Jansen V. A., van Baalen M. Host life history and the evolution of parasite virulence. Evolution. 2001 May;55(5):1056–1062. doi: 10.1554/0014-3820(2001)055[1056:hlhate]2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Gandon S., Mackinnon M. J., Nee S., Read A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001 Dec 13;414(6865):751–756. doi: 10.1038/414751a. [DOI] [PubMed] [Google Scholar]
- Gandon S., Michalakis Y. Evolution of parasite virulence against qualitative or quantitative host resistance. Proc Biol Sci. 2000 May 22;267(1447):985–990. doi: 10.1098/rspb.2000.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gyllenberg M., Parvinen K. Necessary and sufficient conditions for evolutionary suicide. Bull Math Biol. 2001 Sep;63(5):981–993. doi: 10.1006/bulm.2001.0253. [DOI] [PubMed] [Google Scholar]
- Lipsitch M., Moxon E. R. Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 1997 Jan;5(1):31–37. doi: 10.1016/S0966-842X(97)81772-6. [DOI] [PubMed] [Google Scholar]
- Lipsitch M. Vaccination against colonizing bacteria with multiple serotypes. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6571–6576. doi: 10.1073/pnas.94.12.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackinnon M. J., Read A. F. The effects of host immunity on virulence-transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi. Parasitology. 2003 Feb;126(Pt 2):103–112. doi: 10.1017/s003118200200272x. [DOI] [PubMed] [Google Scholar]
- Messenger S. L., Molineux I. J., Bull J. J. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci. 1999 Feb 22;266(1417):397–404. doi: 10.1098/rspb.1999.0651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
- Regoes R. R., Nowak M. A., Bonhoeffer S. Evolution of virulence in a heterogeneous host population. Evolution. 2000 Feb;54(1):64–71. doi: 10.1111/j.0014-3820.2000.tb00008.x. [DOI] [PubMed] [Google Scholar]
- Regoes Roland R., Ebert Dieter, Bonhoeffer Sebastian. Dose-dependent infection rates of parasites produce the Allee effect in epidemiology. Proc Biol Sci. 2002 Feb 7;269(1488):271–279. doi: 10.1098/rspb.2001.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki A., Iwasa Y. Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles. Theor Popul Biol. 1991 Apr;39(2):201–239. doi: 10.1016/0040-5809(91)90036-f. [DOI] [PubMed] [Google Scholar]
- Weiss Robin A. Virulence and pathogenesis. Trends Microbiol. 2002 Jul;10(7):314–317. doi: 10.1016/s0966-842x(02)02391-0. [DOI] [PubMed] [Google Scholar]
- Witter R. L. Avian tumor viruses: persistent and evolving pathogens. Acta Vet Hung. 1997;45(3):251–266. [PubMed] [Google Scholar]
- Witter R. L. Increased virulence of Marek's disease virus field isolates. Avian Dis. 1997 Jan-Mar;41(1):149–163. [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.