Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Jun 22;270(1521):1263–1270. doi: 10.1098/rspb.2003.2375

Plumage colour in nestling blue tits: sexual dichromatism, condition dependence and genetic effects.

Arild Johnsen 1, Kaspar Delhey 1, Staffan Andersson 1, Bart Kempenaers 1
PMCID: PMC1691364  PMID: 12816639

Abstract

Sexual-selection theory assumes that there are costs associated with ornamental plumage coloration. While pigment-based ornaments have repeatedly been shown to be condition dependent, this has been more difficult to demonstrate for structural colours. We present evidence for condition dependence of both types of plumage colour in nestling blue tits (Parus caeruleus). Using reflectance spectrometry, we show that blue tit nestlings are sexually dichromatic, with males having more chromatic (more 'saturated') and ultraviolet (UV)-shifted tail coloration and more chromatic yellow breast coloration. The sexual dimorphism in nestling tail coloration is qualitatively similar to that of chick-feeding adults from the same population. By contrast, the breast plumage of adult birds is not sexually dichromatic in terms of chroma. In nestlings, the chroma of both tail and breast feathers is positively associated with condition (body mass on day 14). The UV/blue hue of the tail feathers is influenced by paternally inherited genes, as indicated by a maternal half-sibling comparison. We conclude that the expression of both carotenoid-based and structural coloration seems to be condition dependent in blue tit nestlings, and that there are additional genetic effects on the hue of the UV/blue tail feathers. The signalling or other functions of sexual dichromatism in nestlings remain obscure. Our study shows that nestling blue tits are suitable model organisms for the study of ontogenetic costs and heritability of both carotenoid-based and structural colour in birds.

Full Text

The Full Text of this article is available as a PDF (356.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A. T., Cuthill I. C., Partridge J. C., Lunau K. Ultraviolet plumage colors predict mate preferences in starlings. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8618–8621. doi: 10.1073/pnas.94.16.8618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dawson D. A., Hanotte O., Greig C., Stewart I. R., Burke T. Polymorphic microsatellites in the blue tit Parus caeruleus and their cross-species utility in 20 songbird families. Mol Ecol. 2000 Nov;9(11):1941–1944. doi: 10.1046/j.1365-294x.2000.01094-14.x. [DOI] [PubMed] [Google Scholar]
  3. Fitze Patrick S., Kölliker Mathias, Richner Heinz. Effects of common origin and common environment on nestling plumage coloration in the great tit (Parus major). Evolution. 2003 Jan;57(1):144–150. doi: 10.1111/j.0014-3820.2003.tb00222.x. [DOI] [PubMed] [Google Scholar]
  4. Grafen A. Biological signals as handicaps. J Theor Biol. 1990 Jun 21;144(4):517–546. doi: 10.1016/s0022-5193(05)80088-8. [DOI] [PubMed] [Google Scholar]
  5. Griffiths R., Double M. C., Orr K., Dawson R. J. A DNA test to sex most birds. Mol Ecol. 1998 Aug;7(8):1071–1075. doi: 10.1046/j.1365-294x.1998.00389.x. [DOI] [PubMed] [Google Scholar]
  6. Hill Geoffrey E., Inouye Caron Y., Montgomerie Robert. Dietary carotenoids predict plumage coloration in wild house finches. Proc Biol Sci. 2002 Jun 7;269(1496):1119–1124. doi: 10.1098/rspb.2002.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hunt S, Cuthill IC, Bennett AT, Griffiths R. Preferences for ultraviolet partners in the blue tit. Anim Behav. 1999 Oct;58(4):809–815. doi: 10.1006/anbe.1999.1214. [DOI] [PubMed] [Google Scholar]
  8. Hõrak P., Vellau H., Ots I., Møller A. P. Growth conditions affect carotenoid-based plumage coloration of great tit nestlings. Naturwissenschaften. 2000 Oct;87(10):460–464. doi: 10.1007/s001140050759. [DOI] [PubMed] [Google Scholar]
  9. Jamieson A. The effectiveness of using co-dominant polymorphic allelic series for (1) checking pedigrees and (2) distinguishing full-sib pair members. Anim Genet. 1994 Jun;25 (Suppl 1):37–44. doi: 10.1111/j.1365-2052.1994.tb00401.x. [DOI] [PubMed] [Google Scholar]
  10. Jeffreys A. J., Allen M. J., Hagelberg E., Sonnberg A. Identification of the skeletal remains of Josef Mengele by DNA analysis. Forensic Sci Int. 1992 Sep;56(1):65–76. doi: 10.1016/0379-0738(92)90148-p. [DOI] [PubMed] [Google Scholar]
  11. Johnsen A., Andersen V., Sunding C., Lifjeld J. T. Female bluethroats enhance offspring immunocompetence through extra-pair copulations. Nature. 2000 Jul 20;406(6793):296–299. doi: 10.1038/35018556. [DOI] [PubMed] [Google Scholar]
  12. doi: 10.1098/rspb.1997.0042. [DOI] [PMC free article] [Google Scholar]
  13. doi: 10.1098/rspb.1997.0221. [DOI] [PMC free article] [Google Scholar]
  14. doi: 10.1098/rspb.1998.0316. [DOI] [PMC free article] [Google Scholar]
  15. doi: 10.1098/rspb.1998.0315. [DOI] [PMC free article] [Google Scholar]
  16. doi: 10.1098/rspb.1998.0435. [DOI] [PMC free article] [Google Scholar]
  17. doi: 10.1098/rspb.1999.0704. [DOI] [PMC free article] [Google Scholar]
  18. Senar J. C., Figuerola J., Pascual J. Brighter yellow blue tits make better parents. Proc Biol Sci. 2002 Feb 7;269(1488):257–261. doi: 10.1098/rspb.2001.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sheldon BC. Differential allocation: tests, mechanisms and implications. Trends Ecol Evol. 2000 Oct 1;15(10):397–402. doi: 10.1016/s0169-5347(00)01953-4. [DOI] [PubMed] [Google Scholar]
  20. Zahavi A. Mate selection-a selection for a handicap. J Theor Biol. 1975 Sep;53(1):205–214. doi: 10.1016/0022-5193(75)90111-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES