Abstract
Evidence continues to accumulate showing that the malaria parasites (Plasmodium spp.) reduce the survival and fecundity of their mosquito vectors (Anopheles spp.). Our ability to identify the possible epidemiological and evolutionary consequences of these parasite-induced fitness reductions has been hampered by a poor understanding of the physiological basis of these shifts. Here, we explore whether the reductions in fecundity and longevity are the result of a parasite-mediated depletion or reallocation of the energetic resources of the mosquito. Mosquitoes infected with Plasmodium chabaudi were expected to have less energetic resources than uninfected mosquitoes, and energy levels were predicted to be lowest in mosquitoes infected with the most virulent parasite genotypes. Not only was there no evidence of a parasite-mediated reduction in the overall energetic budget of mosquitoes, but Plasmodium was actually associated with increased levels of glucose, a key insect nutritional and energetic resource. The data strongly suggest the existence of an increase in sugar feeding in mosquitoes infected with Plasmodium. We suggest different adaptive explanations for an enhanced sugar uptake in infected mosquitoes and call for more studies to investigate the physiological role of glucose in the Plasmodium-mosquito interaction.
Full Text
The Full Text of this article is available as a PDF (101.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A., Knols B. G., Koella J. C. Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l. Parasitology. 2000 Apr;120(Pt 4):329–333. doi: 10.1017/s0031182099005570. [DOI] [PubMed] [Google Scholar]
- Anderson R. A., Koella J. C., Hurd H. The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc Biol Sci. 1999 Sep 7;266(1430):1729–1733. doi: 10.1098/rspb.1999.0839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Burkett D. A., Kline D. L., Carlson D. A. Sugar meal composition of five north central Florida mosquito species (Diptera: Culicidae) as determined by gas chromatography. J Med Entomol. 1999 Jul;36(4):462–467. doi: 10.1093/jmedent/36.4.462. [DOI] [PubMed] [Google Scholar]
- Day J. F., Edman J. D. Malaria renders mice susceptible to mosquito feeding when gametocytes are most infective. J Parasitol. 1983 Feb;69(1):163–170. [PubMed] [Google Scholar]
- Elased K. M., Playfair J. H. Reversal of hypoglycaemia in murine malaria by drugs that inhibit insulin secretion. Parasitology. 1996 Jun;112(Pt 6):515–521. doi: 10.1017/s0031182000066087. [DOI] [PubMed] [Google Scholar]
- Elased K. M., Taverne J., Playfair J. H. Malaria, blood glucose, and the role of tumour necrosis factor (TNF) in mice. Clin Exp Immunol. 1996 Sep;105(3):443–449. doi: 10.1046/j.1365-2249.1996.d01-781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elased K., Playfair J. H. Hypoglycemia and hyperinsulinemia in rodent models of severe malaria infection. Infect Immun. 1994 Nov;62(11):5157–5160. doi: 10.1128/iai.62.11.5157-5160.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferdig M. T., Beerntsen B. T., Spray F. J., Li J., Christensen B. M. Reproductive costs associated with resistance in a mosquito-filarial worm system. Am J Trop Med Hyg. 1993 Dec;49(6):756–762. doi: 10.4269/ajtmh.1993.49.756. [DOI] [PubMed] [Google Scholar]
- Ferguson H. M., Read A. F. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc Biol Sci. 2002 Jun 22;269(1497):1217–1224. doi: 10.1098/rspb.2002.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson Heather M., Read Andrew F. Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol. 2002 Jun;18(6):256–261. doi: 10.1016/s1471-4922(02)02281-x. [DOI] [PubMed] [Google Scholar]
- Foster W. A. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–474. doi: 10.1146/annurev.en.40.010195.002303. [DOI] [PubMed] [Google Scholar]
- Freier J. E., Friedman S. Effect of host infection with Plasmodium gallinaceum on the reproductive capacity of Aedes aegypti. J Invertebr Pathol. 1976 Sep;28(2):161–166. doi: 10.1016/0022-2011(76)90117-8. [DOI] [PubMed] [Google Scholar]
- Gandon S., Mackinnon M. J., Nee S., Read A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001 Dec 13;414(6865):751–756. doi: 10.1038/414751a. [DOI] [PubMed] [Google Scholar]
- Golderer G., Werner E. R., Leitner S., Gröbner P., Werner-Felmayer G. Nitric oxide synthase is induced in sporulation of Physarum polycephalum. Genes Dev. 2001 May 15;15(10):1299–1309. doi: 10.1101/gad.890501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hacker C. S., Kilama W. L. The relationship between plasmodium gallinaceum density and the fecundity of Aedes aegypti. J Invertebr Pathol. 1974 Jan;23(1):101–105. doi: 10.1016/0022-2011(74)90079-2. [DOI] [PubMed] [Google Scholar]
- Hacker C. S. The differential effect of Plasmodium gallinaceum on the fecundity of several strains of Aedes aegypti. J Invertebr Pathol. 1971 Nov;18(3):373–377. doi: 10.1016/0022-2011(71)90040-1. [DOI] [PubMed] [Google Scholar]
- Han Y. S., Thompson J., Kafatos F. C., Barillas-Mury C. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J. 2000 Nov 15;19(22):6030–6040. doi: 10.1093/emboj/19.22.6030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogg J. C., Hurd H. Malaria-induced reduction of fecundity during the first gonotrophic cycle of Anopheles stephensi mosquitoes. Med Vet Entomol. 1995 Apr;9(2):176–180. doi: 10.1111/j.1365-2915.1995.tb00175.x. [DOI] [PubMed] [Google Scholar]
- Hogg J. C., Hurd H. Plasmodium yoelii nigeriensis: the effect of high and low intensity of infection upon the egg production and bloodmeal size of Anopheles stephensi during three gonotrophic cycles. Parasitology. 1995 Dec;111(Pt 5):555–562. doi: 10.1017/s0031182000077027. [DOI] [PubMed] [Google Scholar]
- Hogg J. C., Hurd H. The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania. Parasitology. 1997 Apr;114(Pt 4):325–331. doi: 10.1017/s0031182096008542. [DOI] [PubMed] [Google Scholar]
- Holliday-Hanson M. L., Yuval B., Washino R. K. Energetics and sugar-feeding of field-collected anopheline females. J Vector Ecol. 1997 Jun;22(1):83–89. [PubMed] [Google Scholar]
- Hurd H. Host fecundity reduction: a strategy for damage limitation? Trends Parasitol. 2001 Aug;17(8):363–368. doi: 10.1016/s1471-4922(01)01927-4. [DOI] [PubMed] [Google Scholar]
- Hurd H. Parasite manipulation of insect reproduction: who benefits? Parasitology. 1998;116 (Suppl):S13–S21. doi: 10.1017/s0031182000084900. [DOI] [PubMed] [Google Scholar]
- Hurd H., Warr E., Polwart A. A parasite that increases host lifespan. Proc Biol Sci. 2001 Aug 22;268(1477):1749–1753. doi: 10.1098/rspb.2001.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kearns J. Y., Hurd H., Pullin A. S. Effect of metacestodes of Hymenolepis diminuta on storage and circulating carbohydrates in the intermediate host, Tenebrio molitor. Parasitology. 1994 May;108(Pt 4):473–478. doi: 10.1017/s0031182000076034. [DOI] [PubMed] [Google Scholar]
- Kimura C., Oike M., Koyama T., Ito Y. Impairment of endothelial nitric oxide production by acute glucose overload. Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E171–E178. doi: 10.1152/ajpendo.2001.280.1.E171. [DOI] [PubMed] [Google Scholar]
- Koella J. C., Sørensen F. L., Anderson R. A. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci. 1998 May 7;265(1398):763–768. doi: 10.1098/rspb.1998.0358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luckhart S., Rosenberg R. Gene structure and polymorphism of an invertebrate nitric oxide synthase gene. Gene. 1999 May 17;232(1):25–34. doi: 10.1016/s0378-1119(99)00121-3. [DOI] [PubMed] [Google Scholar]
- Luckhart S., Vodovotz Y., Cui L., Rosenberg R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5700–5705. doi: 10.1073/pnas.95.10.5700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maier W. A., Becker-Feldman H., Seitz H. M. Pathology of malaria-infected mosquitoes. Parasitol Today. 1987 Jul;3(7):216–218. doi: 10.1016/0169-4758(87)90063-9. [DOI] [PubMed] [Google Scholar]
- Schiefer B. A., Ward R. A., Eldridge B. F. Plasmodium cynomolgi: effects of malaria infection on laboratory flight performance of Anopheles stephensi mosquitoes. Exp Parasitol. 1977 Apr;41(2):397–404. doi: 10.1016/0014-4894(77)90111-4. [DOI] [PubMed] [Google Scholar]
- Schwartz A., Koella J. C. Trade-offs, conflicts of interest and manipulation in Plasmodium-mosquito interactions. Trends Parasitol. 2001 Apr;17(4):189–194. doi: 10.1016/s1471-4922(00)01945-0. [DOI] [PubMed] [Google Scholar]
- Seitz H. M., Maier W. A., Rottok M., Becker-Feldmann H. Concomitant infections of Anopheles stephensi with Plasmodium berghei and Serratia marcescens: additive detrimental effects. Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Aug;266(1-2):155–166. doi: 10.1016/s0176-6724(87)80029-9. [DOI] [PubMed] [Google Scholar]
- Shandilya H., Gakhar S. K., Adak T. Plasmodium infection-induced changes in salivary gland proteins of malaria vector Anopheles stephensi (Diptera:Culicidae). Jpn J Infect Dis. 1999 Oct;52(5):214–216. [PubMed] [Google Scholar]
- Sinden R. E., Billingsley P. F. Plasmodium invasion of mosquito cells: hawk or dove? Trends Parasitol. 2001 May;17(5):209–212. doi: 10.1016/s1471-4922(01)01928-6. [DOI] [PubMed] [Google Scholar]
- Straif S. C., Beier J. C. Effects of sugar availability on the blood-feeding behavior of Anopheles gambiae (Diptera:Culicidae). J Med Entomol. 1996 Jul;33(4):608–612. doi: 10.1093/jmedent/33.4.608. [DOI] [PubMed] [Google Scholar]
- Takken W., Knols B. G. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–157. doi: 10.1146/annurev.ento.44.1.131. [DOI] [PubMed] [Google Scholar]
- Van Handel E., Day J. F. Assay of lipids, glycogen and sugars in individual mosquitoes: correlations with wing length in field-collected Aedes vexans. J Am Mosq Control Assoc. 1988 Dec;4(4):549–550. [PubMed] [Google Scholar]
- Van Handel E. Rapid determination of glycogen and sugars in mosquitoes. J Am Mosq Control Assoc. 1985 Sep;1(3):299–301. [PubMed] [Google Scholar]
- Van Handel E. Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc. 1985 Sep;1(3):302–304. [PubMed] [Google Scholar]
- Wekesa J. W., Copeland R. S., Mwangi R. W. Effect of Plasmodium falciparum on blood feeding behavior of naturally infected Anopheles mosquitoes in western Kenya. Am J Trop Med Hyg. 1992 Oct;47(4):484–488. doi: 10.4269/ajtmh.1992.47.484. [DOI] [PubMed] [Google Scholar]
- Yee W. L., Foster W. A. Diel sugar-feeding and host-seeking rhythms in mosquitoes (Diptera: Culicidae) under laboratory conditions. J Med Entomol. 1992 Sep;29(5):784–791. doi: 10.1093/jmedent/29.5.784. [DOI] [PubMed] [Google Scholar]