Abstract
Many micro-organisms are known to produce efficient toxic substances against conspecifics and closely related species. The widespread coexistence of killer (toxin producer) and sensitive (non-producer) strains is a puzzle calling for a theoretical explanation. Based on stochastic cellular automaton simulations and the corresponding semi-analytical configuration-field approximation models, we suggest that metapopulation dynamics offers a plausible rationale for the maintenance of polymorphism in killer-sensitive systems. A slight trade-off between toxin production and population growth rate is sufficient to maintain the regional coexistence of toxic and sensitive strains, if toxic killing is a local phenomenon restricted to small habitat patches and local populations regularly go extinct and are renewed via recolonizations from neighbouring patches. Pattern formation on the regional scale does not play a decisive part in this mechanism, but the local manner of interactions is essential.
Full Text
The Full Text of this article is available as a PDF (120.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abranches J., Morais P. B., Rosa C. A., Mendonça-Hagler L. C., Hagler A. N. The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol. 1997 Apr;43(4):328–336. doi: 10.1139/m97-046. [DOI] [PubMed] [Google Scholar]
- Achtman M., Mercer A., Kusecek B., Pohl A., Heuzenroeder M., Aaronson W., Sutton A., Silver R. P. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun. 1983 Jan;39(1):315–335. doi: 10.1128/iai.39.1.315-335.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams J., Kinney T., Thompson S., Rubin L., Helling R. B. Frequency-Dependent Selection for Plasmid-Containing Cells of ESCHERICHIA COLI. Genetics. 1979 Apr;91(4):627–637. doi: 10.1093/genetics/91.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bérdy J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol. 1974;18(0):309–406. [PubMed] [Google Scholar]
- Chao L., Levin B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6324–6328. doi: 10.1073/pnas.78.10.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czárán Tamás L., Hoekstra Rolf F., Pagie Ludo. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A. 2002 Jan 15;99(2):786–790. doi: 10.1073/pnas.012399899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durrett R., Levin S. Spatial aspects of interspecific competition. Theor Popul Biol. 1998 Feb;53(1):30–43. doi: 10.1006/tpbi.1997.1338. [DOI] [PubMed] [Google Scholar]
- Frean M., Abraham E. R. Rock-scissors-paper and the survival of the weakest. Proc Biol Sci. 2001 Jul 7;268(1474):1323–1327. doi: 10.1098/rspb.2001.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr Benjamin, Riley Margaret A., Feldman Marcus W., Bohannan Brendan J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002 Jul 11;418(6894):171–174. doi: 10.1038/nature00823. [DOI] [PubMed] [Google Scholar]
- Pagie L., Hogeweg P. Colicin diversity: a result of eco-evolutionary dynamics. J Theor Biol. 1999 Jan 21;196(2):251–261. doi: 10.1006/jtbi.1998.0838. [DOI] [PubMed] [Google Scholar]
- Pugsley A. P. The ins and outs of colicins. Part I: Production, and translocation across membranes. Microbiol Sci. 1984 Oct;1(7):168–175. [PubMed] [Google Scholar]
- Riley M. A., Gordon D. M. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol. 1992 Jul;138(7):1345–1352. doi: 10.1099/00221287-138-7-1345. [DOI] [PubMed] [Google Scholar]
- Riley M. A. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet. 1998;32:255–278. doi: 10.1146/annurev.genet.32.1.255. [DOI] [PubMed] [Google Scholar]
- Schmitt Manfred J., Breinig Frank. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev. 2002 Aug;26(3):257–276. doi: 10.1111/j.1574-6976.2002.tb00614.x. [DOI] [PubMed] [Google Scholar]
- Starmer W. T., Ganter P. F., Aberdeen V., Lachance M. A., Phaff H. J. The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol. 1987 Sep;33(9):783–796. doi: 10.1139/m87-134. [DOI] [PubMed] [Google Scholar]
- Tipper D. J., Bostian K. A. Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev. 1984 Jun;48(2):125–156. doi: 10.1128/mr.48.2.125-156.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickner R. B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol. 1992;46:347–375. doi: 10.1146/annurev.mi.46.100192.002023. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.