Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Jul 7;270(1522):1373–1378. doi: 10.1098/rspb.2003.2338

Killer-sensitive coexistence in metapopulations of micro-organisms.

Tamás L Czárán 1, Rolf F Hoekstra 1
PMCID: PMC1691387  PMID: 12965028

Abstract

Many micro-organisms are known to produce efficient toxic substances against conspecifics and closely related species. The widespread coexistence of killer (toxin producer) and sensitive (non-producer) strains is a puzzle calling for a theoretical explanation. Based on stochastic cellular automaton simulations and the corresponding semi-analytical configuration-field approximation models, we suggest that metapopulation dynamics offers a plausible rationale for the maintenance of polymorphism in killer-sensitive systems. A slight trade-off between toxin production and population growth rate is sufficient to maintain the regional coexistence of toxic and sensitive strains, if toxic killing is a local phenomenon restricted to small habitat patches and local populations regularly go extinct and are renewed via recolonizations from neighbouring patches. Pattern formation on the regional scale does not play a decisive part in this mechanism, but the local manner of interactions is essential.

Full Text

The Full Text of this article is available as a PDF (120.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abranches J., Morais P. B., Rosa C. A., Mendonça-Hagler L. C., Hagler A. N. The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol. 1997 Apr;43(4):328–336. doi: 10.1139/m97-046. [DOI] [PubMed] [Google Scholar]
  2. Achtman M., Mercer A., Kusecek B., Pohl A., Heuzenroeder M., Aaronson W., Sutton A., Silver R. P. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun. 1983 Jan;39(1):315–335. doi: 10.1128/iai.39.1.315-335.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams J., Kinney T., Thompson S., Rubin L., Helling R. B. Frequency-Dependent Selection for Plasmid-Containing Cells of ESCHERICHIA COLI. Genetics. 1979 Apr;91(4):627–637. doi: 10.1093/genetics/91.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bérdy J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol. 1974;18(0):309–406. [PubMed] [Google Scholar]
  5. Chao L., Levin B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6324–6328. doi: 10.1073/pnas.78.10.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Czárán Tamás L., Hoekstra Rolf F., Pagie Ludo. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A. 2002 Jan 15;99(2):786–790. doi: 10.1073/pnas.012399899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Durrett R., Levin S. Spatial aspects of interspecific competition. Theor Popul Biol. 1998 Feb;53(1):30–43. doi: 10.1006/tpbi.1997.1338. [DOI] [PubMed] [Google Scholar]
  8. Frean M., Abraham E. R. Rock-scissors-paper and the survival of the weakest. Proc Biol Sci. 2001 Jul 7;268(1474):1323–1327. doi: 10.1098/rspb.2001.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kerr Benjamin, Riley Margaret A., Feldman Marcus W., Bohannan Brendan J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002 Jul 11;418(6894):171–174. doi: 10.1038/nature00823. [DOI] [PubMed] [Google Scholar]
  10. Pagie L., Hogeweg P. Colicin diversity: a result of eco-evolutionary dynamics. J Theor Biol. 1999 Jan 21;196(2):251–261. doi: 10.1006/jtbi.1998.0838. [DOI] [PubMed] [Google Scholar]
  11. Pugsley A. P. The ins and outs of colicins. Part I: Production, and translocation across membranes. Microbiol Sci. 1984 Oct;1(7):168–175. [PubMed] [Google Scholar]
  12. Riley M. A., Gordon D. M. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol. 1992 Jul;138(7):1345–1352. doi: 10.1099/00221287-138-7-1345. [DOI] [PubMed] [Google Scholar]
  13. Riley M. A. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet. 1998;32:255–278. doi: 10.1146/annurev.genet.32.1.255. [DOI] [PubMed] [Google Scholar]
  14. Schmitt Manfred J., Breinig Frank. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev. 2002 Aug;26(3):257–276. doi: 10.1111/j.1574-6976.2002.tb00614.x. [DOI] [PubMed] [Google Scholar]
  15. Starmer W. T., Ganter P. F., Aberdeen V., Lachance M. A., Phaff H. J. The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol. 1987 Sep;33(9):783–796. doi: 10.1139/m87-134. [DOI] [PubMed] [Google Scholar]
  16. Tipper D. J., Bostian K. A. Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev. 1984 Jun;48(2):125–156. doi: 10.1128/mr.48.2.125-156.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wickner R. B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol. 1992;46:347–375. doi: 10.1146/annurev.mi.46.100192.002023. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12965028s01.pdf (602.3KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES