Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Aug 22;270(1525):1691–1696. doi: 10.1098/rspb.2003.2411

Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch.

Jonathan D Blount 1, Neil B Metcalfe 1, Kathryn E Arnold 1, Peter F Surai 1, Godefroy L Devevey 1, Pat Monaghan 1
PMCID: PMC1691426  PMID: 12964996

Abstract

Early nutrition has recently been shown to have pervasive, downstream effects on adult life-history parameters including lifespan, but the underlying mechanisms remain poorly understood. Damage to biomolecules caused by oxidants, such as free radicals generated during metabolic processes, is widely recognized as a key contributor to somatic degeneration and the rate of ageing. Lipophilic antioxidants (carotenoids, vitamins A and E) are an important component of vertebrate defences against such damage. By using an avian model, we show here that independent of later nutrition, individuals experiencing a short period of low-quality nutrition during the nestling period had a twofold reduction in plasma levels of these antioxidants at adulthood. We found no effects on adult external morphology or sexual attractiveness: in mate-choice trials females did not discriminate between adult males that had received standard- or lower-quality diet as neonates. Our results suggest low-quality neonatal nutrition resulted in a long-term impairment in the capacity to assimilate dietary antioxidants, thereby setting up a need to trade off the requirement for antioxidant activity against the need to maintain morphological development and sexual attractiveness. Such state-dependent trade-offs could underpin the link between early nutrition and senescence.

Full Text

The Full Text of this article is available as a PDF (98.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aihie Sayer A., Dunn R., Langley-Evans S., Cooper C. Prenatal exposure to a maternal low protein diet shortens life span in rats. Gerontology. 2001 Jan-Feb;47(1):9–14. doi: 10.1159/000052764. [DOI] [PubMed] [Google Scholar]
  2. Beckman K. B., Ames B. N. The free radical theory of aging matures. Physiol Rev. 1998 Apr;78(2):547–581. doi: 10.1152/physrev.1998.78.2.547. [DOI] [PubMed] [Google Scholar]
  3. Desai M., Crowther N. J., Lucas A., Hales C. N. Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr. 1996 Oct;76(4):591–603. doi: 10.1079/bjn19960065. [DOI] [PubMed] [Google Scholar]
  4. Desai M., Crowther N. J., Ozanne S. E., Lucas A., Hales C. N. Adult glucose and lipid metabolism may be programmed during fetal life. Biochem Soc Trans. 1995 May;23(2):331–335. doi: 10.1042/bst0230331. [DOI] [PubMed] [Google Scholar]
  5. Jennings B. J., Ozanne S. E., Hales C. N. Nutrition, oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging? Mol Genet Metab. 2000 Sep-Oct;71(1-2):32–42. doi: 10.1006/mgme.2000.3077. [DOI] [PubMed] [Google Scholar]
  6. Kim H. S., Arai H., Arita M., Sato Y., Ogihara T., Tamai H., Inoue K., Mino M. Age-related changes of alpha-tocopherol transfer protein expression in rat liver. J Nutr Sci Vitaminol (Tokyo) 1996 Feb;42(1):11–18. doi: 10.3177/jnsv.42.11. [DOI] [PubMed] [Google Scholar]
  7. Lucas A., Baker B. A., Desai M., Hales C. N. Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. Br J Nutr. 1996 Oct;76(4):605–612. doi: 10.1079/bjn19960066. [DOI] [PubMed] [Google Scholar]
  8. Lucas A. Programming by early nutrition: an experimental approach. J Nutr. 1998 Feb;128(2 Suppl):401S–406S. doi: 10.1093/jn/128.2.401S. [DOI] [PubMed] [Google Scholar]
  9. McGraw K. J., Adkins-Regan E., Parker R. S. Anhydrolutein in the zebra finch: a new, metabolically derived carotenoid in birds. Comp Biochem Physiol B Biochem Mol Biol. 2002 Aug;132(4):811–818. doi: 10.1016/s1096-4959(02)00100-8. [DOI] [PubMed] [Google Scholar]
  10. Metcalfe N. B., Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001 May 1;16(5):254–260. doi: 10.1016/s0169-5347(01)02124-3. [DOI] [PubMed] [Google Scholar]
  11. Nutting David F., Kumar N. Suresh, Siddiqi Shadab A., Mansbach Charles M., 2nd Nutrient absorption. Curr Opin Gastroenterol. 2002 Mar;18(2):168–175. doi: 10.1097/00001574-200203000-00003. [DOI] [PubMed] [Google Scholar]
  12. Ohlsson Thomas, Smith Henrik G., Råberg Lars, Hasselquist Dennis. Pheasant sexual ornaments reflect nutritional conditions during early growth. Proc Biol Sci. 2002 Jan 7;269(1486):21–27. doi: 10.1098/rspb.2001.1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. doi: 10.1098/rspb.1999.0649. [DOI] [PMC free article] [Google Scholar]
  14. Sayer A. Aihie, Cooper C. Early diet and growth: impact on ageing. Proc Nutr Soc. 2002 Feb;61(1):79–85. doi: 10.1079/pns2001138. [DOI] [PubMed] [Google Scholar]
  15. Snoeck A., Remacle C., Reusens B., Hoet J. J. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57(2):107–118. doi: 10.1159/000243170. [DOI] [PubMed] [Google Scholar]
  16. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yemelyanov A. Y., Katz N. B., Bernstein P. S. Ligand-binding characterization of xanthophyll carotenoids to solubilized membrane proteins derived from human retina. Exp Eye Res. 2001 Apr;72(4):381–392. doi: 10.1006/exer.2000.0965. [DOI] [PubMed] [Google Scholar]
  18. von Schantz T., Bensch S., Grahn M., Hasselquist D., Wittzell H. Good genes, oxidative stress and condition-dependent sexual signals. Proc Biol Sci. 1999 Jan 7;266(1414):1–12. doi: 10.1098/rspb.1999.0597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES