Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Aug 22;270(1525):1667–1677. doi: 10.1098/rspb.2003.2416

Epidemiology, hypermutation, within-host evolution and the virulence of Neisseria meningitidis.

Lauren Ancel Meyers 1, Bruce R Levin 1, Anthony R Richardson 1, Igor Stojiljkovic 1
PMCID: PMC1691427  PMID: 12964993

Abstract

Many so-called pathogenic bacteria such as Neisseria meningitidis, Haemophilus influenzae, Staphylococcus aureus and Streptococcus pneumoniae are far more likely to colonize and maintain populations in healthy individuals asymptomatically than to cause disease. Disease is a dead-end for these bacteria: virulence shortens the window of time during which transmission to new hosts can occur and the subpopulations of bacteria actually responsible for disease, like those in the blood or cerebral spinal fluid, are rarely transmitted to new hosts. Hence, the virulence factors underlying their occasional pathogenicity must evolve in response to selection for something other than making their hosts sick. What are those selective pressures? We address this general question of the evolution of virulence in the context of phase shifting in N. meningitidis, a mutational process that turns specific genes on and off, and, in particular, contingency loci that code for virulence determinants such as pili, lipopolysaccharides, capsular polysaccharides and outer membrane proteins. We use mathematical models of the epidemiology and the within-host infection dynamics of N. meningitidis to make the case that rapid phase shifting evolves as an adaptation for colonization of diverse hosts and that the virulence of this bacterium is an inadvertent consequence of short-sighted within-host evolution, which is exasperated by the increased mutation rates associated with phase shifting. We present evidence for and suggest experimental and retrospective tests of these hypotheses.

Full Text

The Full Text of this article is available as a PDF (179.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achtman M., van der Ende A., Zhu P., Koroleva I. S., Kusecek B., Morelli G., Schuurman I. G., Brieske N., Zurth K., Kostyukova N. N. Molecular epidemiology of serogroup a meningitis in Moscow, 1969 to 1997. Emerg Infect Dis. 2001 May-Jun;7(3):420–427. doi: 10.3201/eid0703.010309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. B., Alifano P. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell. 1999 Apr;3(4):435–445. doi: 10.1016/s1097-2765(00)80471-2. [DOI] [PubMed] [Google Scholar]
  3. Di Martino M., Calì G., Astorre P., Usai G. C., Ferrari R., Stroffolini T. Meningococcal carriage and vaccination in army recruits in Italy. Boll Ist Sieroter Milan. 1990;69(1):357–359. [PubMed] [Google Scholar]
  4. Gagneux Sébastien P., Hodgson Abraham, Smith Tom A., Wirth Thierry, Ehrhard Ingrid, Morelli Giovanna, Genton Blaise, Binka Fred N., Achtman Mark, Pluschke Gerd. Prospective study of a serogroup X Neisseria meningitidis outbreak in northern Ghana. J Infect Dis. 2002 Feb 14;185(5):618–626. doi: 10.1086/339010. [DOI] [PubMed] [Google Scholar]
  5. Garza J. C., Slatkin M., Freimer N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol. 1995 Jul;12(4):594–603. doi: 10.1093/oxfordjournals.molbev.a040239. [DOI] [PubMed] [Google Scholar]
  6. Hammerschmidt S., Müller A., Sillmann H., Mühlenhoff M., Borrow R., Fox A., van Putten J., Zollinger W. D., Gerardy-Schahn R., Frosch M. Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol. 1996 Jun;20(6):1211–1220. doi: 10.1111/j.1365-2958.1996.tb02641.x. [DOI] [PubMed] [Google Scholar]
  7. Harr B., Schlötterer C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics. 2000 Jul;155(3):1213–1220. doi: 10.1093/genetics/155.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jennings M. P., Srikhanta Y. N., Moxon E. R., Kramer M., Poolman J. T., Kuipers B., van der Ley P. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology. 1999 Nov;145(Pt 11):3013–3021. doi: 10.1099/00221287-145-11-3013. [DOI] [PubMed] [Google Scholar]
  9. Jonsson A. B., Nyberg G., Normark S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 1991 Feb;10(2):477–488. doi: 10.1002/j.1460-2075.1991.tb07970.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kruglyak S., Durrett R., Schug M. D., Aquadro C. F. Distribution and abundance of microsatellites in the yeast genome can Be explained by a balance between slippage events and point mutations. Mol Biol Evol. 2000 Aug;17(8):1210–1219. doi: 10.1093/oxfordjournals.molbev.a026404. [DOI] [PubMed] [Google Scholar]
  11. Levin B. R., Bull J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994 Mar;2(3):76–81. doi: 10.1016/0966-842x(94)90538-x. [DOI] [PubMed] [Google Scholar]
  12. Lipsitch M., Dykes J. K., Johnson S. E., Ades E. W., King J., Briles D. E., Carlone G. M. Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine. 2000 Jun 15;18(25):2895–2901. doi: 10.1016/s0264-410x(00)00046-3. [DOI] [PubMed] [Google Scholar]
  13. Moxon E. R., Murphy P. A. Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1534–1536. doi: 10.1073/pnas.75.3.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol. 1994 Jan 1;4(1):24–33. doi: 10.1016/s0960-9822(00)00005-1. [DOI] [PubMed] [Google Scholar]
  15. Murphy G. L., Connell T. D., Barritt D. S., Koomey M., Cannon J. G. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell. 1989 Feb 24;56(4):539–547. doi: 10.1016/0092-8674(89)90577-1. [DOI] [PubMed] [Google Scholar]
  16. Odugbemi T., Ademidun O., Agbabiaka A., Banjo T. Nasopharyngeal carriage of Neisseria meningitidis among school children at Ijede, Lagos State, Nigeria. Ethiop Med J. 1992 Jan;30(1):33–36. [PubMed] [Google Scholar]
  17. Pluschke G., Mercer A., Kusećek B., Pohl A., Achtman M. Induction of bacteremia in newborn rats by Escherichia coli K1 is correlated with only certain O (lipopolysaccharide) antigen types. Infect Immun. 1983 Feb;39(2):599–608. doi: 10.1128/iai.39.2.599-608.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richardson A. R., Stojiljkovic I. HmbR, a hemoglobin-binding outer membrane protein of Neisseria meningitidis, undergoes phase variation. J Bacteriol. 1999 Apr;181(7):2067–2074. doi: 10.1128/jb.181.7.2067-2074.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richardson A. R., Stojiljkovic I. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol Microbiol. 2001 May;40(3):645–655. doi: 10.1046/j.1365-2958.2001.02408.x. [DOI] [PubMed] [Google Scholar]
  20. Richardson Anthony R., Yu Zhong, Popovic Tanja, Stojiljkovic Igor. Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6103–6107. doi: 10.1073/pnas.092568699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saunders N. J., Jeffries A. C., Peden J. F., Hood D. W., Tettelin H., Rappuoli R., Moxon E. R. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol. 2000 Jul;37(1):207–215. doi: 10.1046/j.1365-2958.2000.02000.x. [DOI] [PubMed] [Google Scholar]
  22. Schug M. D., Hutter C. M., Wetterstrand K. A., Gaudette M. S., Mackay T. F., Aquadro C. F. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol. 1998 Dec;15(12):1751–1760. doi: 10.1093/oxfordjournals.molbev.a025901. [DOI] [PubMed] [Google Scholar]
  23. Sørensen T. I., Nielsen G. G., Andersen P. K., Teasdale T. W. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988 Mar 24;318(12):727–732. doi: 10.1056/NEJM198803243181202. [DOI] [PubMed] [Google Scholar]
  24. Taha Muhamed-Kheir, Deghmane Ala-Eddine, Antignac Aude, Zarantonelli Maria Leticia, Larribe Mireille, Alonso Jean-Michel. The duality of virulence and transmissibility in Neisseria meningitidis. Trends Microbiol. 2002 Aug;10(8):376–382. doi: 10.1016/s0966-842x(02)02402-2. [DOI] [PubMed] [Google Scholar]
  25. Vogel U., Morelli G., Zurth K., Claus H., Kriener E., Achtman M., Frosch M. Necessity of molecular techniques to distinguish between Neisseria meningitidis strains isolated from patients with meningococcal disease and from their healthy contacts. J Clin Microbiol. 1998 Sep;36(9):2465–2470. doi: 10.1128/jcm.36.9.2465-2470.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhu P., van der Ende A., Falush D., Brieske N., Morelli G., Linz B., Popovic T., Schuurman I. G., Adegbola R. A., Zurth K. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A. 2001 Apr 3;98(9):5234–5239. doi: 10.1073/pnas.061386098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. de Vries F. P., van Der Ende A., van Putten J. P., Dankert J. Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens. Infect Immun. 1996 Aug;64(8):2998–3006. doi: 10.1128/iai.64.8.2998-3006.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES