Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Aug 22;270(1525):1703–1712. doi: 10.1098/rspb.2003.2430

Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts.

J-C Simon 1, S Carré 1, M Boutin 1, N Prunier-Leterme 1, B Sabater-Mun 1, A Latorre 1, R Bournoville 1
PMCID: PMC1691435  PMID: 12964998

Abstract

In North America, the pea aphid Acyrthosiphon pisum encompasses ecologically and genetically distinct host races that offer an ideal biological system for studies on sympatric speciation. In addition to its obligate symbiont Buchnera, pea aphids harbour several facultative and phylogenetically distant symbionts. We explored the relationships between host races of A. pisum and their symbiotic microbiota to gain insights into the historical process of ecological specialization and symbiotic acquisition in this aphid. We used allozyme and microsatellite markers to analyse the extent of genetic differentiation between populations of A. pisum on pea, alfalfa and clover in France. In parallel, we examined: (i) the distribution of four facultative symbionts; and (ii) the genetic variation in the Buchnera genome across host-associated populations of A. pisum. Our study clearly demonstrates that populations of A. pisum on pea, clover and alfalfa in France are genetically divergent, which indicates that they constitute distinct host races. We also found a very strong association between host races of A. pisum and their symbiotic microbiota. We stress the need for phylogeographic studies to shed light on the process of host-race formation and acquisition of facultative symbionts in A. pisum. We also question the effects of these symbionts on aphid host fitness, including their role in adaptation to a host plant.

Full Text

The Full Text of this article is available as a PDF (151.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett R. J., Crease T. J., Hebert P. D., Via S. Mitochondrial DNA diversity in the pea aphid Acyrthosiphon pisum. Genome. 1994 Oct;37(5):858–865. doi: 10.1139/g94-121. [DOI] [PubMed] [Google Scholar]
  2. Baumann P., Baumann L., Lai C. Y., Rouhbakhsh D., Moran N. A., Clark M. A. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol. 1995;49:55–94. doi: 10.1146/annurev.mi.49.100195.000415. [DOI] [PubMed] [Google Scholar]
  3. Birkle L. M., Douglas A. E. Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliation. Heredity (Edinb) 1999 Jun;82(Pt 6):605–612. doi: 10.1046/j.1365-2540.1999.00509.x. [DOI] [PubMed] [Google Scholar]
  4. Boulding E. G. Molecular evidence against phylogenetically distinct host races of the pea aphid (Acyrthosiphon pisum). Genome. 1998 Dec;41(6):769–775. doi: 10.1139/g98-094. [DOI] [PubMed] [Google Scholar]
  5. Bournoville R., Simon J. C., Badenhausser I., Girousse C., Guilloux T., André S. Clones of pea aphid, Acyrthosiphon pisum (Hemiptera: aphididae) distinguished using genetic markers, differ in their damaging effect on a resistant alfalfa cultivar. Bull Entomol Res. 2000 Feb;90(1):33–39. [PubMed] [Google Scholar]
  6. Budowle B., Chakraborty R., Giusti A. M., Eisenberg A. J., Allen R. C. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet. 1991 Jan;48(1):137–144. [PMC free article] [PubMed] [Google Scholar]
  7. Cavalli-Sforza L. L., Edwards A. W. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967 May;19(3 Pt 1):233–257. [PMC free article] [PubMed] [Google Scholar]
  8. Chakraborty R., Jin L. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. EXS. 1993;67:153–175. doi: 10.1007/978-3-0348-8583-6_14. [DOI] [PubMed] [Google Scholar]
  9. Chen D. Q., Campbell B. C., Purcell A. H. A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr Microbiol. 1996 Aug;33(2):123–128. doi: 10.1007/s002849900086. [DOI] [PubMed] [Google Scholar]
  10. Chen D. Q., Purcell A. H. Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol. 1997 Apr;34(4):220–225. doi: 10.1007/s002849900172. [DOI] [PubMed] [Google Scholar]
  11. Darby A. C., Birkle L. M., Turner S. L., Douglas A. E. An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol Ecol. 2001 Jun;36(1):43–50. doi: 10.1111/j.1574-6941.2001.tb00824.x. [DOI] [PubMed] [Google Scholar]
  12. Delmotte F., Leterme N., Gauthier J-P, Rispe C., Simon J-C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol. 2002 Apr;11(4):711–723. doi: 10.1046/j.1365-294x.2002.01478.x. [DOI] [PubMed] [Google Scholar]
  13. Douglas A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37. doi: 10.1146/annurev.ento.43.1.17. [DOI] [PubMed] [Google Scholar]
  14. Feder J. L., Opp S. B., Wlazlo B., Reynolds K., Go W., Spisak S. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7990–7994. doi: 10.1073/pnas.91.17.7990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Filchak K. E., Roethele J. B., Feder J. L. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature. 2000 Oct 12;407(6805):739–742. doi: 10.1038/35037578. [DOI] [PubMed] [Google Scholar]
  16. Fukatsu T., Tsuchida T., Nikoh N., Koga R. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol. 2001 Mar;67(3):1284–1291. doi: 10.1128/AEM.67.3.1284-1291.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haack L., Simon J. C., Gauthier J. P., Plantegenest M., Dedryver C. A. Evidence for predominant clones in a cyclically parthenogenetic organism provided by combined demographic and genetic analyses. Mol Ecol. 2000 Dec;9(12):2055–2066. doi: 10.1046/j.1365-294x.2000.01108.x. [DOI] [PubMed] [Google Scholar]
  18. Hawthorne D. J., Via S. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature. 2001 Aug 30;412(6850):904–907. doi: 10.1038/35091062. [DOI] [PubMed] [Google Scholar]
  19. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oliver Kerry M., Russell Jacob A., Moran Nancy A., Hunter Martha S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A. 2003 Jan 31;100(4):1803–1807. doi: 10.1073/pnas.0335320100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sandström J. P., Russell J. A., White J. P., Moran N. A. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol. 2001 Jan;10(1):217–228. doi: 10.1046/j.1365-294x.2001.01189.x. [DOI] [PubMed] [Google Scholar]
  22. Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000 Sep 7;407(6800):81–86. doi: 10.1038/35024074. [DOI] [PubMed] [Google Scholar]
  23. Simon J. C., Baumann S., Sunnucks P., Hebert P. D., Pierre J. S., Le Gallic J. F., Dedryver C. A. Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers. Mol Ecol. 1999 Apr;8(4):531–545. doi: 10.1046/j.1365-294x.1999.00583.x. [DOI] [PubMed] [Google Scholar]
  24. Sunnucks P., De Barro P. J., Lushai G., Maclean N., Hales D. Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Mol Ecol. 1997 Nov;6(11):1059–1073. doi: 10.1046/j.1365-294x.1997.00280.x. [DOI] [PubMed] [Google Scholar]
  25. Sunnucks P., England P. R., Taylor A. C., Hales D. F. Microsatellite and chromosome evolution of parthenogenetic sitobion aphids in Australia. Genetics. 1996 Oct;144(2):747–756. doi: 10.1093/genetics/144.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sunnucks P., Wilson A. C., Beheregaray L. B., Zenger K., French J., Taylor A. C. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol. 2000 Nov;9(11):1699–1710. doi: 10.1046/j.1365-294x.2000.01084.x. [DOI] [PubMed] [Google Scholar]
  27. Tsuchida Tsutomu, Koga Ryuichi, Shibao Harunobu, Matsumoto Tadao, Fukatsu Takema. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2002 Oct;11(10):2123–2135. doi: 10.1046/j.1365-294x.2002.01606.x. [DOI] [PubMed] [Google Scholar]
  28. Via S., Bouck A. C., Skillman S. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution. 2000 Oct;54(5):1626–1637. doi: 10.1111/j.0014-3820.2000.tb00707.x. [DOI] [PubMed] [Google Scholar]
  29. Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol. 2001 Jul 1;16(7):381–390. doi: 10.1016/s0169-5347(01)02188-7. [DOI] [PubMed] [Google Scholar]
  30. Wilson AC, Sunnucks P, Hales DF. Microevolution, low clonal diversity and genetic affinities of parthenogenetic sitobion aphids in new zealand. Mol Ecol. 1999 Oct;8(10):1655–1666. doi: 10.1046/j.1365-294x.1999.00751.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES