Abstract
The relationship between sexual selection and extinction risk has rarely been investigated. This is unfortunate because extinction plays a key role in determining the patterns of species richness seen in extant clades, which form the basis of comparative studies into the role that sexual selection may play in promoting speciation. We investigate the extent to which the perceived risk of extinction relates to four different estimates of sexual selection in 1030 species of birds. We find no evidence that the number of threatened species is distributed unevenly according to a social mating system, and neither of our two measures of pre-mating sexual selection (sexual dimorphism and dichromatism) was related to extinction risk, after controlling for phylogenetic inertia. However, threatened species apparently experience more intense post-mating sexual selection, measured as testis size, than non-threatened species. These results persisted after including body size as a covariate in the analysis, and became even stronger after controlling for clutch size (two known correlates of extinction risk). Sexual selection may therefore be a double-edged process-promoting speciation on one hand but promoting extinction on the other. Furthermore, we suggest that it is post-mating sexual selection, in particular, that is responsible for the negative effect of sexual selection on clade size. Why this might be is unclear, but the mean population fitness of species with high intensities of post-mating sexual selection may be especially low if costs associated with multiple mating are high or if the selection load imposed by post-mating selection is higher relative to that of pre-mating sexual selection.
Full Text
The Full Text of this article is available as a PDF (99.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brooks R. Negative genetic correlation between male sexual attractiveness and survival. Nature. 2000 Jul 6;406(6791):67–70. doi: 10.1038/35017552. [DOI] [PubMed] [Google Scholar]
- Dawkins R., Krebs J. R. Arms races between and within species. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):489–511. doi: 10.1098/rspb.1979.0081. [DOI] [PubMed] [Google Scholar]
- Dunn P. O., Whittingham L. A., Pitcher T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution. 2001 Jan;55(1):161–175. doi: 10.1111/j.0014-3820.2001.tb01281.x. [DOI] [PubMed] [Google Scholar]
- Gage Matthew J. G., Parker Geoffrey A., Nylin Soren, Wiklund Christer. Sexual selection and speciation in mammals, butterflies and spiders. Proc Biol Sci. 2002 Nov 22;269(1507):2309–2316. doi: 10.1098/rspb.2002.2154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavrilets S., Arnqvist G., Friberg U. The evolution of female mate choice by sexual conflict. Proc Biol Sci. 2001 Mar 7;268(1466):531–539. doi: 10.1098/rspb.2000.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavrilets S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature. 2000 Feb 24;403(6772):886–889. doi: 10.1038/35002564. [DOI] [PubMed] [Google Scholar]
- Higashi M., Takimoto G., Yamamura N. Sympatric speciation by sexual selection. Nature. 1999 Dec 2;402(6761):523–526. doi: 10.1038/990087. [DOI] [PubMed] [Google Scholar]
- Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland Brett. Sexual selection fails to promote adaptation to a new environment. Evolution. 2002 Apr;56(4):721–730. doi: 10.1111/j.0014-3820.2002.tb01383.x. [DOI] [PubMed] [Google Scholar]
- Houle David, Kondrashov Alexey S. Coevolution of costly mate choice and condition-dependent display of good genes. Proc Biol Sci. 2002 Jan 7;269(1486):97–104. doi: 10.1098/rspb.2001.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennions M. D., Petrie M. Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Philos Soc. 2000 Feb;75(1):21–64. doi: 10.1017/s0006323199005423. [DOI] [PubMed] [Google Scholar]
- Kotiaho J. S. Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol Rev Camb Philos Soc. 2001 Aug;76(3):365–376. doi: 10.1017/s1464793101005711. [DOI] [PubMed] [Google Scholar]
- Moore Sarah L., Wilson Kenneth. Parasites as a viability cost of sexual selection in natural populations of mammals. Science. 2002 Sep 20;297(5589):2015–2018. doi: 10.1126/science.1074196. [DOI] [PubMed] [Google Scholar]
- Nunn C. L., Gittleman J. L., Antonovics J. Promiscuity and the primate immune system. Science. 2000 Nov 10;290(5494):1168–1170. doi: 10.1126/science.290.5494.1168. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1997.0057. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1998.0308. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0726. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rstb.1998.0207. [DOI] [PMC free article] [Google Scholar]
- Panhuis T. M., Butlin R., Zuk M., Tregenza T. Sexual selection and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):364–371. doi: 10.1016/s0169-5347(01)02160-7. [DOI] [PubMed] [Google Scholar]
- Parker G. A., Partridge L. Sexual conflict and speciation. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):261–274. doi: 10.1098/rstb.1998.0208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitnick S., Miller G. T., Reagan J., Holland B. Males' evolutionary responses to experimental removal of sexual selection. Proc Biol Sci. 2001 May 22;268(1471):1071–1080. doi: 10.1098/rspb.2001.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
- Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
- Tanaka Y. Sexual selection enhances population extinction in a changing environment. J Theor Biol. 1996 Jun 7;180(3):197–206. doi: 10.1006/jtbi.1996.0096. [DOI] [PubMed] [Google Scholar]
- Thrall P. H., Antonovics J., Dobson A. P. Sexually transmitted diseases in polygynous mating systems: prevalence and impact on reproductive success. Proc Biol Sci. 2000 Aug 7;267(1452):1555–1563. doi: 10.1098/rspb.2000.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M., Barton N. H., Coyne J. A. Theory and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):330–343. doi: 10.1016/s0169-5347(01)02177-2. [DOI] [PubMed] [Google Scholar]
- Vamosi Jana C., Otto Sarah P. When looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plants. Proc Biol Sci. 2002 Jun 7;269(1496):1187–1194. doi: 10.1098/rspb.2002.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitlock M. C. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution. 2000 Dec;54(6):1855–1861. doi: 10.1111/j.0014-3820.2000.tb01232.x. [DOI] [PubMed] [Google Scholar]
- Wingfield J. C. Environmental and endocrine control of reproduction in the song sparrow, Melospiza melodia. I. Temporal organization of the breeding cycle. Gen Comp Endocrinol. 1984 Dec;56(3):406–416. doi: 10.1016/0016-6480(84)90083-2. [DOI] [PubMed] [Google Scholar]