Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Sep 22;270(1527):1947–1955. doi: 10.1098/rspb.2003.2458

Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa.

Claudine Montgelard 1, Conrad A Matthee 1, Terence J Robinson 1
PMCID: PMC1691458  PMID: 14561309

Abstract

The phylogenetic relationships among the Gliridae (order Rodentia) were assessed using 3430 nucleotides derived from three nuclear fragments (beta-spectrin non-erythrocytic 1, thyrotropin and lecithin cholesterol acyl transferase) and one mitochondrial gene (12S rRNA). We included 14 glirid species, representative of seven genera of the three recognized subfamilies (Graphiurinae, Glirinae and Leithiinae) in our analysis. The molecular data identified three evolutionary lineages that broadly correspond to the three extant subfamilies. However, the data suggest that the genus Muscardinus, previously regarded as falling within the Glirinae, should be included in the Leithiinae. Molecular dating using local molecular clocks and partitioned datasets allowed an estimate of the timing of cladogenesis within the glirids. Graphiurus probably diverged early in the group's evolution (40-50 Myr ago) and the three subfamilies diverged contemporaneously, probably in Europe. The radiation within Graphiurus is more recent, with the colonization of Africa by this lineage estimated at ca. 8-10 Myr ago.

Full Text

The Full Text of this article is available as a PDF (264.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cao Y., Fujiwara M., Nikaido M., Okada N., Hasegawa M. Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene. 2000 Dec 23;259(1-2):149–158. doi: 10.1016/s0378-1119(00)00427-3. [DOI] [PubMed] [Google Scholar]
  2. Douzery E., Catzeflis F. M. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia). J Mol Evol. 1995 Nov;41(5):622–636. doi: 10.1007/BF00175821. [DOI] [PubMed] [Google Scholar]
  3. Haq B. U., Hardenbol J., Vail P. R. Chronology of fluctuating sea levels since the triassic. Science. 1987 Mar 6;235(4793):1156–1167. doi: 10.1126/science.235.4793.1156. [DOI] [PubMed] [Google Scholar]
  4. Huchon Dorothée, Madsen Ole, Sibbald Mark J. J. B., Ament Kai, Stanhope Michael J., Catzeflis François, de Jong Wilfried W., Douzery Emmanuel J. P. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol. 2002 Jul;19(7):1053–1065. doi: 10.1093/oxfordjournals.molbev.a004164. [DOI] [PubMed] [Google Scholar]
  5. Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001 Dec 14;294(5550):2310–2314. doi: 10.1126/science.1065889. [DOI] [PubMed] [Google Scholar]
  6. Huelsenbeck John P., Larget Bret, Miller Richard E., Ronquist Fredrik. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol. 2002 Oct;51(5):673–688. doi: 10.1080/10635150290102366. [DOI] [PubMed] [Google Scholar]
  7. Matthee C. A., Burzlaff J. D., Taylor J. F., Davis S. K. Mining the mammalian genome for artiodactyl systematics. Syst Biol. 2001 Jun;50(3):367–390. [PubMed] [Google Scholar]
  8. McGuire G., Denham M. C., Balding D. J. Models of sequence evolution for DNA sequences containing gaps. Mol Biol Evol. 2001 Apr;18(4):481–490. doi: 10.1093/oxfordjournals.molbev.a003827. [DOI] [PubMed] [Google Scholar]
  9. Montgelard Claudine, Bentz Sophie, Tirard Claire, Verneau Olivier, Catzeflis François M. Molecular systematics of sciurognathi (rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Mol Phylogenet Evol. 2002 Feb;22(2):220–233. doi: 10.1006/mpev.2001.1056. [DOI] [PubMed] [Google Scholar]
  10. Philippe H., Forterre P. The rooting of the universal tree of life is not reliable. J Mol Evol. 1999 Oct;49(4):509–523. doi: 10.1007/pl00006573. [DOI] [PubMed] [Google Scholar]
  11. Philippe H. MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res. 1993 Nov 11;21(22):5264–5272. doi: 10.1093/nar/21.22.5264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  13. Robinson M., Catzeflis F., Briolay J., Mouchiroud D. Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT. Mol Phylogenet Evol. 1997 Dec;8(3):423–434. doi: 10.1006/mpev.1997.0424. [DOI] [PubMed] [Google Scholar]
  14. Springer M. S., Douzery E. Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J Mol Evol. 1996 Oct;43(4):357–373. doi: 10.1007/BF02339010. [DOI] [PubMed] [Google Scholar]
  15. Voelker G., Edwards S. V. Can weighting improve bushy trees? Models of cytochrome b evolution and the molecular systematics of pipits and wagtails (Aves: Motacillidae). Syst Biol. 1998 Dec;47(4):589–603. doi: 10.1080/106351598260608. [DOI] [PubMed] [Google Scholar]
  16. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
  17. Yang Z. Maximum-Likelihood Models for Combined Analyses of Multiple Sequence Data. J Mol Evol. 1996 May;42(5):587–596. doi: 10.1007/BF02352289. [DOI] [PubMed] [Google Scholar]
  18. Yoder A. D., Yang Z. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol. 2000 Jul;17(7):1081–1090. doi: 10.1093/oxfordjournals.molbev.a026389. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES