Abstract
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Full Text
The Full Text of this article is available as a PDF (297.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson Andrew James, McOwan Peter William. Model of a predatory stealth behaviour camouflaging motion. Proc Biol Sci. 2003 Mar 7;270(1514):489–495. doi: 10.1098/rspb.2002.2259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeddeker Norbert, Kern Roland, Egelhaaf Martin. Chasing a dummy target: smooth pursuit and velocity control in male blowflies. Proc Biol Sci. 2003 Feb 22;270(1513):393–399. doi: 10.1098/rspb.2002.2240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton B. G., Tatler B. W., Laughlin S. B. Variations in photoreceptor response dynamics across the fly retina. J Neurophysiol. 2001 Aug;86(2):950–960. doi: 10.1152/jn.2001.86.2.950. [DOI] [PubMed] [Google Scholar]
- Dickinson M. H., Lehmann F. O., Sane S. P. Wing rotation and the aerodynamic basis of insect flight. Science. 1999 Jun 18;284(5422):1954–1960. doi: 10.1126/science.284.5422.1954. [DOI] [PubMed] [Google Scholar]
- Ellington C. P. The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol. 1999 Dec;202(Pt 23):3439–3448. doi: 10.1242/jeb.202.23.3439. [DOI] [PubMed] [Google Scholar]
- Gabbiani F., Krapp H. G., Laurent G. Computation of object approach by a wide-field, motion-sensitive neuron. J Neurosci. 1999 Feb 1;19(3):1122–1141. doi: 10.1523/JNEUROSCI.19-03-01122.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert C., Strausfeld N. J. The functional organization of male-specific visual neurons in flies. J Comp Physiol A. 1991 Oct;169(4):395–411. doi: 10.1007/BF00197653. [DOI] [PubMed] [Google Scholar]
- Gray J. R., Lee J. K., Robertson R. M. Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts. J Comp Physiol A. 2001 Mar;187(2):115–129. doi: 10.1007/s003590100182. [DOI] [PubMed] [Google Scholar]
- Gronenberg W., Strausfeld N. J. Descending pathways connecting the male-specific visual system of flies to the neck and flight motor. J Comp Physiol A. 1991 Oct;169(4):413–426. doi: 10.1007/BF00197654. [DOI] [PubMed] [Google Scholar]
- Juusola M., French A. S., Uusitalo R. O., Weckström M. Information processing by graded-potential transmission through tonically active synapses. Trends Neurosci. 1996 Jul;19(7):292–297. doi: 10.1016/S0166-2236(96)10028-X. [DOI] [PubMed] [Google Scholar]
- Juusola M., French A. S. Visual acuity for moving objects in first- and second-order neurons of the fly compound eye. J Neurophysiol. 1997 Mar;77(3):1487–1495. doi: 10.1152/jn.1997.77.3.1487. [DOI] [PubMed] [Google Scholar]
- Korenberg M. J., Juusola M., French A. S. Two methods for calculating the responses of photoreceptors to moving objects. Ann Biomed Eng. 1998 Mar-Apr;26(2):308–314. doi: 10.1114/1.58. [DOI] [PubMed] [Google Scholar]
- Lindemann J. P., Kern R., Michaelis C., Meyer P., van Hateren J. H., Egelhaaf M. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Res. 2003 Mar;43(7):779–791. doi: 10.1016/s0042-6989(03)00039-7. [DOI] [PubMed] [Google Scholar]
- Lisberger S. G., Morris E. J., Tychsen L. Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annu Rev Neurosci. 1987;10:97–129. doi: 10.1146/annurev.ne.10.030187.000525. [DOI] [PubMed] [Google Scholar]
- Reichardt W., Poggio T. Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys. 1976 Aug;9(3):311-75, 428-38. doi: 10.1017/s0033583500002523. [DOI] [PubMed] [Google Scholar]
- Rind F. C., Simmons P. J. Seeing what is coming: building collision-sensitive neurones. Trends Neurosci. 1999 May;22(5):215–220. doi: 10.1016/s0166-2236(98)01332-0. [DOI] [PubMed] [Google Scholar]
- Schilstra C., van Hateren J. H. Stabilizing gaze in flying blowflies. Nature. 1998 Oct 15;395(6703):654–654. doi: 10.1038/27114. [DOI] [PubMed] [Google Scholar]
- Schilstra C, Hateren JH. Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics . J Exp Biol. 1999 Jun;202(Pt 11):1481–1490. doi: 10.1242/jeb.202.11.1481. [DOI] [PubMed] [Google Scholar]
- Srinivasan M. V., Bernard G. D. The fly can discriminate movement at signal/noise ratios as low as one-eighth. Vision Res. 1977;17(5):609–616. doi: 10.1016/0042-6989(77)90136-5. [DOI] [PubMed] [Google Scholar]
- Zeil J. Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae (Diptera). Cell Tissue Res. 1983;229(3):591–610. doi: 10.1007/BF00207700. [DOI] [PubMed] [Google Scholar]