Abstract
Few genetic data are currently available to assess patterns of population differentiation and speciation in planktonic taxa that inhabit the open ocean. A phylogenetic study of the oceanic copepod family Eucalanidae was undertaken to develop a model zooplankton taxon in which speciation events can be confidently identified. A global survey of 20 described species (526 individuals) sampled from 88 locations worldwide found high levels of cryptic diversity at the species level. Mitochondrial (16S rRNA, CO1) and nuclear (ITS2) DNA sequence data support 12 new genetic lineages as highly distinct from other populations with which they are currently considered conspecific. Out of these 12, at least four are new species. The circumglobal, boundary current species Rhincalanus nasutus was found to be a cryptic species complex, with genetic divergence between populations unrelated to geographic distance. 'Conspecific' populations of seven species exhibited varying levels of genetic differentiation between Atlantic and Pacific basins, suggesting that continental landmasses form barriers to dispersal for a subset of circumglobal species. A molecular phylogeny of the family based on both mitochondrial (16S rRNA) and nuclear (ITS2, 18S rRNA) gene loci supports monophyly of the family Eucalanidae, all four eucalanid genera and the 'pileatus' and 'subtenuis' species groups.
Full Text
The Full Text of this article is available as a PDF (377.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bierne N., Borsa P., Daguin C., Jollivet D., Viard F., Bonhomme F., David P. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol Ecol. 2003 Feb;12(2):447–461. doi: 10.1046/j.1365-294x.2003.01730.x. [DOI] [PubMed] [Google Scholar]
- Bierne Nicolas, Bonhomme François, David Patrice. Habitat preference and the marine-speciation paradox. Proc Biol Sci. 2003 Jul 7;270(1522):1399–1406. doi: 10.1098/rspb.2003.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckley T. R., Simon C., Flook P. K., Misof B. Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene. Insect Mol Biol. 2000 Dec;9(6):565–580. doi: 10.1046/j.1365-2583.2000.00220.x. [DOI] [PubMed] [Google Scholar]
- Cruise L., Ho L. K., Veitch K., Fuller G., Morris B. J. Kainate receptors activate NF-kappaB via MAP kinase in striatal neurones. Neuroreport. 2000 Feb 7;11(2):395–398. doi: 10.1097/00001756-200002070-00034. [DOI] [PubMed] [Google Scholar]
- Darling K. F., Wade C. M., Stewart I. A., Kroon D., Dingle R., Brown A. J. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature. 2000 May 4;405(6782):43–47. doi: 10.1038/35011002. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
- Ladoukakis E. D., Saavedra C., Magoulas A., Zouros E. Mitochondrial DNA variation in a species with two mitochondrial genomes: the case of Mytilus galloprovincialis from the Atlantic, the Mediterranean and the Black Sea. Mol Ecol. 2002 Apr;11(4):755–769. doi: 10.1046/j.1365-294x.2002.01473.x. [DOI] [PubMed] [Google Scholar]
- Lee C. E. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate "populations". Evolution. 2000 Dec;54(6):2014–2027. doi: 10.1111/j.0014-3820.2000.tb01245.x. [DOI] [PubMed] [Google Scholar]
- Lessios H. A., Kessing B. D., Pearse J. S. Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution. 2001 May;55(5):955–975. doi: 10.1554/0014-3820(2001)055[0955:psasit]2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Norris R. D., de Vargas C. Evolution all at sea. Nature. 2000 May 4;405(6782):23–24. doi: 10.1038/35011162. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1998.0334. [DOI] [PMC free article] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Reid D. G., Rumbak E., Thomas R. H. DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc Lond B Biol Sci. 1996 Jul 29;351(1342):877–895. doi: 10.1098/rstb.1996.0082. [DOI] [PubMed] [Google Scholar]
- Rocha-Olivares A., Fleeger J. W., Foltz D. W. Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol. 2001 Jun;18(6):1088–1102. doi: 10.1093/oxfordjournals.molbev.a003880. [DOI] [PubMed] [Google Scholar]
- Saez Alberto G., Probert Ian, Geisen Markus, Quinn Patrick, Young Jeremy R., Medlin Linda K. Pseudo-cryptic speciation in coccolithophores. Proc Natl Acad Sci U S A. 2003 May 20;100(12):7163–7168. doi: 10.1073/pnas.1132069100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vargas C., Norris R., Zaninetti L., Gibb S. W., Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2864–2868. doi: 10.1073/pnas.96.6.2864. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
