Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Dec 22;270(1533):2613–2621. doi: 10.1098/rspb.2003.2547

Multiple colonization of Madagascar and Socotra by colubrid snakes: evidence from nuclear and mitochondrial gene phylogenies.

Zoltán Tamás Nagy 1, Ulrich Joger 1, Michael Wink 1, Frank Glaw 1, Miguel Vences 1
PMCID: PMC1691547  PMID: 14728785

Abstract

Colubrid snakes form a speciose group of unclarified phylogeny. Their almost cosmopolitan distribution could be interpreted as a product of plate-tectonic vicariance. We used sequences of the nuclear c-mos, the mitochondrial cytochrome b and the 16S rRNA genes in 41 taxa to elucidate the relationships between the endemic colubrid genera found in Madagascar and in the Socotra archipelago. The well-resolved trees indicate multiple origins of both the Malagasy and the Socotran taxa. The Malagasy genus Mimophis was nested within the Psammophiinae, and the Socotran Hemerophis was closely related to Old World representatives of the former genus Coluber. The remaining 14 genera of Malagasy colubrids formed a monophyletic sister group of the Socotran Ditypophis (together forming the Pseudoxyrhophiinae). Molecular-clock estimates place the divergence of Malagasy and Socotran colubrids from their non-insular sister groups into a time-frame between the Eocene and Miocene. Over-seas rafting is the most likely hypothesis for the origin of at least the Malagasy taxa. The discovery of a large monophyletic clade of colubrids endemic to Madagascar indicates a need for taxonomic changes. The relationship of this radiation to the Socotran Ditypophis highlights the potential of the Indian Ocean islands to act as an evolutionary reservoir for lineages that have become extinct in Africa and Asia.

Full Text

The Full Text of this article is available as a PDF (303.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avidan B., Sonnenberg A., Schnell T. G., Budiman-Mak E., Sontag S. J. Risk factors of oesophagitis in arthritic patients. Eur J Gastroenterol Hepatol. 2001 Sep;13(9):1095–1099. doi: 10.1097/00042737-200109000-00017. [DOI] [PubMed] [Google Scholar]
  2. Burbrink F. T., Lawson R., Slowinski J. B. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution. 2000 Dec;54(6):2107–2118. doi: 10.1554/0014-3820(2000)054[2107:MDPOTP]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  3. Caccone A., Amato G., Gratry O. C., Behler J., Powell J. R. A molecular phylogeny of four endangered Madagascar tortoises based on MtDNA sequences. Mol Phylogenet Evol. 1999 Jun;12(1):1–9. doi: 10.1006/mpev.1998.0594. [DOI] [PubMed] [Google Scholar]
  4. Farias I. P., Ortí G., Sampaio I., Schneider H., Meyer A. The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. J Mol Evol. 2001 Aug;53(2):89–103. doi: 10.1007/s002390010197. [DOI] [PubMed] [Google Scholar]
  5. Harris D. J. Codon bias variation in C-mos between squamate families might distort phylogenetic inferences. Mol Phylogenet Evol. 2003 Jun;27(3):540–544. doi: 10.1016/s1055-7903(03)00012-5. [DOI] [PubMed] [Google Scholar]
  6. Heise P. J., Maxson L. R., Dowling H. G., Hedges S. B. Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol Biol Evol. 1995 Mar;12(2):259–265. doi: 10.1093/oxfordjournals.molbev.a040202. [DOI] [PubMed] [Google Scholar]
  7. Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
  8. Kelly Christopher M. R., Barker Nigel P., Villet Martin H. Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Syst Biol. 2003 Aug;52(4):439–459. doi: 10.1080/10635150390218132. [DOI] [PubMed] [Google Scholar]
  9. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  10. Mausfeld P., Vences M., Schmitz A., Veith M. First data on the molecular phylogeography of scincid lizards of the genus Mabuya. Mol Phylogenet Evol. 2000 Oct;17(1):11–14. doi: 10.1006/mpev.2000.0809. [DOI] [PubMed] [Google Scholar]
  11. Murphy W. J., Collier G. E. A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol. 1997 Aug;14(8):790–799. doi: 10.1093/oxfordjournals.molbev.a025819. [DOI] [PubMed] [Google Scholar]
  12. Palkovacs Eric P., Gerlach Justin, Caccone Adalgisa. The evolutionary origin of Indian Ocean tortoises (Dipsochelys). Mol Phylogenet Evol. 2002 Aug;24(2):216–227. doi: 10.1016/s1055-7903(02)00211-7. [DOI] [PubMed] [Google Scholar]
  13. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  14. Rabinowitz P. D., Coffin M. F., Falvey D. The separation of madagascar and Africa. Science. 1983 Apr 1;220(4592):67–69. doi: 10.1126/science.220.4592.67. [DOI] [PubMed] [Google Scholar]
  15. Rambaut A., Grassly N. C. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci. 1997 Jun;13(3):235–238. doi: 10.1093/bioinformatics/13.3.235. [DOI] [PubMed] [Google Scholar]
  16. Raxworthy C. J., Forstner M. R. J., Nussbaum R. A. Chameleon radiation by oceanic dispersal. Nature. 2002 Feb 14;415(6873):784–787. doi: 10.1038/415784a. [DOI] [PubMed] [Google Scholar]
  17. Richards C. M., Moore W. S. A phylogeny for the African treefrog family Hyperoliidae based on mitochondrial rDNA. Mol Phylogenet Evol. 1996 Jun;5(3):522–532. doi: 10.1006/mpev.1996.0047. [DOI] [PubMed] [Google Scholar]
  18. Ruedi M., Auberson M., Savolainen V. Biogeography of Sulawesian shrews: testing for their origin with a parametric bootstrap on molecular data. Mol Phylogenet Evol. 1998 Jun;9(3):567–571. doi: 10.1006/mpev.1998.0487. [DOI] [PubMed] [Google Scholar]
  19. Schmidt Heiko A., Strimmer Korbinian, Vingron Martin, von Haeseler Arndt. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002 Mar;18(3):502–504. doi: 10.1093/bioinformatics/18.3.502. [DOI] [PubMed] [Google Scholar]
  20. Sherbakov D. Y., Kamaltynov R. M., Ogarkov O. B., Verheyen E. Patterns of evolutionary change in Baikalian gammarids inferred from DNA sequences (Crustacea, Amphipoda). Mol Phylogenet Evol. 1998 Oct;10(2):160–167. doi: 10.1006/mpev.1997.0482. [DOI] [PubMed] [Google Scholar]
  21. Slowinski Joseph B., Lawson Robin. Snake phylogeny: evidence from nuclear and mitochondrial genes. Mol Phylogenet Evol. 2002 Aug;24(2):194–202. doi: 10.1016/s1055-7903(02)00239-7. [DOI] [PubMed] [Google Scholar]
  22. Storey M., Mahoney J. J., Saunders A. D., Duncan R. A., Kelley S. P., Coffin M. F. Timing of hot spot--related volcanism and the breakup of madagascar and India. Science. 1995 Feb 10;267(5199):852–855. doi: 10.1126/science.267.5199.852. [DOI] [PubMed] [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vidal N., Kindl S. G., Wong A., Hedges S. B. Phylogenetic relationships of xenodontine snakes inferred from 12S and 16S ribosomal RNA sequences. Mol Phylogenet Evol. 2000 Mar;14(3):389–402. doi: 10.1006/mpev.1999.0717. [DOI] [PubMed] [Google Scholar]
  25. Vidal Nicolas, Hedges S. Blair. Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes. C R Biol. 2002 Sep;325(9):987–995. doi: 10.1016/s1631-0691(02)01509-3. [DOI] [PubMed] [Google Scholar]
  26. Whelan S., Liò P., Goldman N. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet. 2001 May;17(5):262–272. doi: 10.1016/s0168-9525(01)02272-7. [DOI] [PubMed] [Google Scholar]
  27. de Haan Cornelius C. Extrabuccal infralabial secretion outlets in Dromophis, Mimophis and Psammophis species (Serpentes, Colubridae, Psammophiini). A probable substitute for 'self-rubbing' and cloacal scent gland functions, and a cue for a taxonomic account. C R Biol. 2003 Mar;326(3):275–286. doi: 10.1016/s1631-0691(03)00073-8. [DOI] [PubMed] [Google Scholar]
  28. de Queiroz Alan, Lawson Robin, Lemos-Espinal Julio A. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: how much DNA sequence is enough? Mol Phylogenet Evol. 2002 Feb;22(2):315–329. doi: 10.1006/mpev.2001.1074. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
14728785s01.pdf (924.3KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES