Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jan 7;271(1534):21–25. doi: 10.1098/rspb.2003.2559

A priori prediction of disease invasion dynamics in a novel environment.

Colin A Russell 1, David L Smith 1, Lance A Waller 1, James E Childs 1, Leslie A Real 1
PMCID: PMC1691560  PMID: 15002767

Abstract

Directly transmitted infectious diseases spread through wildlife populations as travelling waves away from the sites of original introduction. These waves often become distorted through their interaction with environmental and population heterogeneities and by long-distance translocation of infected individuals. Accurate a priori predictions of travelling waves of infection depend upon understanding and quantifying these distorting factors. We assess the effects of anisotropies arising from the orientation of rivers in relation to the direction of disease-front propagation and the damming effect of mountains on disease movement in natural populations. The model successfully predicts the local and large-scale prevaccination spread of raccoon rabies through New York State, based on a previous spatially heterogeneous model of raccoon-rabies invasion across the state of Connecticut. Use of this model provides a rare example of a priori prediction of an epidemic invasion over a naturally heterogeneous landscape. Model predictions matched to data can also be used to evaluate the most likely points of disease introduction. These results have general implications for predicting future pathogen invasions and evaluating potential containment strategies.

Full Text

The Full Text of this article is available as a PDF (581.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Childs J. E., Curns A. T., Dey M. E., Real A. L., Rupprecht C. E., Krebs J. W. Rabies epizootics among raccoons vary along a North-South gradient in the Eastern United States. Vector Borne Zoonotic Dis. 2001 Winter;1(4):253–267. doi: 10.1089/15303660160025895. [DOI] [PubMed] [Google Scholar]
  2. Grenfell B. T., Bjørnstad O. N., Kappey J. Travelling waves and spatial hierarchies in measles epidemics. Nature. 2001 Dec 13;414(6865):716–723. doi: 10.1038/414716a. [DOI] [PubMed] [Google Scholar]
  3. Jenkins S. R., Winkler W. G. Descriptive epidemiology from an epizootic of raccoon rabies in the Middle Atlantic States, 1982-1983. Am J Epidemiol. 1987 Sep;126(3):429–437. doi: 10.1093/oxfordjournals.aje.a114674. [DOI] [PubMed] [Google Scholar]
  4. Krebs J. W., Holman R. C., Hines U., Strine T. W., Mandel E. J., Childs J. E. Rabies surveillance in the United States during 1991. J Am Vet Med Assoc. 1992 Dec 15;201(12):1836–1848. [PubMed] [Google Scholar]
  5. Lucey B. T., Russell C. A., Smith D., Wilson M. L., Long A., Waller L. A., Childs J. E., Real L. A. Spatiotemporal analysis of epizootic raccoon rabies propagation in Connecticut, 1991-1995. Vector Borne Zoonotic Dis. 2002 Summer;2(2):77–86. doi: 10.1089/153036602321131878. [DOI] [PubMed] [Google Scholar]
  6. Moore D. A. Spatial diffusion of raccoon rabies in Pennsylvania, USA. Prev Vet Med. 1999 May 14;40(1):19–32. doi: 10.1016/s0167-5877(99)00005-7. [DOI] [PubMed] [Google Scholar]
  7. Nettles V. F., Shaddock J. H., Sikes R. K., Reyes C. R. Rabies in translocated raccoons. Am J Public Health. 1979 Jun;69(6):601–602. doi: 10.2105/ajph.69.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Smith David L., Lucey Brendan, Waller Lance A., Childs James E., Real Leslie A. Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3668–3672. doi: 10.1073/pnas.042400799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Smith J. S., Sumner J. W., Roumillat L. F., Baer G. M., Winkler W. G. Antigenic characteristics of isolates associated with a new epizootic of raccoon rabies in the United States. J Infect Dis. 1984 May;149(5):769–774. doi: 10.1093/infdis/149.5.769. [DOI] [PubMed] [Google Scholar]
  10. Smith J. S., Yager P. A., Bigler W. J., Hartwig E. C., Jr Surveillance and epidemiologic mapping of monoclonal antibody-defined rabies variants in Florida. J Wildl Dis. 1990 Oct;26(4):473–485. doi: 10.7589/0090-3558-26.4.473. [DOI] [PubMed] [Google Scholar]
  11. Wilson M. L., Bretsky P. M., Cooper G. H., Jr, Egbertson S. H., Van Kruiningen H. J., Cartter M. L. Emergence of raccoon rabies in Connecticut, 1991-1994: spatial and temporal characteristics of animal infection and human contact. Am J Trop Med Hyg. 1997 Oct;57(4):457–463. doi: 10.4269/ajtmh.1997.57.457. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file 1
15002767s01.pdf (205.2KB, pdf)
Supplementary data file 2
Download video file (3.7MB, avi)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES