Abstract
Ecological divergence in the face of gene flow has recently become implicated as a potentially important cause of speciation and adaptive radiation. Here, we develop a genomic approach to test for divergent selection in sympatric host races of the larch budmoth Zeiraphera diniana (Lepidoptera: Tortricidae). We analysed hundreds of amplified fragment length polymorphism markers in 92 individuals in sympatric and allopatric populations, and in two backcross broods used to map the markers to individual chromosomes. The results directly confirm the existence of natural hybridization and demonstrate strong heterogeneity between chromosomes in terms of molecular divergence between host races (the average level of divergence was FST = 0.216). However, genomic heterogeneity was not found when we analysed divergence between geographically separated populations of the same host race. We conclude that the variance of the level of sympatric divergence among chromosomes is the footprint of divergent selection acting on a few linkage groups, combined with appreciable gene flow that homogenizes between-race variation at the remaining linkage groups. These results, coupled with other recent multilocus analyses of sister species pairs, demonstrate that selection-driven sympatric phase of genetic divergence in the presence of gene flow is a likely feature of speciation.
Full Text
The Full Text of this article is available as a PDF (332.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. C., Thompson E. A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics. 2002 Mar;160(3):1217–1229. doi: 10.1093/genetics/160.3.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton N., Bengtsson B. O. The barrier to genetic exchange between hybridising populations. Heredity (Edinb) 1986 Dec;57(Pt 3):357–376. doi: 10.1038/hdy.1986.135. [DOI] [PubMed] [Google Scholar]
- Berlocher Stewart H., Feder Jeffrey L. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol. 2002;47:773–815. doi: 10.1146/annurev.ento.47.091201.145312. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
- Dieckmann U., Doebeli M. On the origin of species by sympatric speciation. Nature. 1999 Jul 22;400(6742):354–357. doi: 10.1038/22521. [DOI] [PubMed] [Google Scholar]
- Drès Michele, Mallet James. Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):471–492. doi: 10.1098/rstb.2002.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emelianov I., Drès M., Baltensweiler W., Mallet J. Host-induced assortative mating in host races of the larch budmoth. Evolution. 2001 Oct;55(10):2002–2010. doi: 10.1111/j.0014-3820.2001.tb01317.x. [DOI] [PubMed] [Google Scholar]
- Emelianov I., Simpson F., Narang P., Mallet J. Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana. J Evol Biol. 2003 Mar;16(2):208–218. doi: 10.1046/j.1420-9101.2003.00524.x. [DOI] [PubMed] [Google Scholar]
- Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filatov Dmitry A., Charlesworth Deborah. Substitution rates in the X- and Y-linked genes of the plants, Silene latifolia and S. dioica. Mol Biol Evol. 2002 Jun;19(6):898–907. doi: 10.1093/oxfordjournals.molbev.a004147. [DOI] [PubMed] [Google Scholar]
- Hawthorne D. J., Via S. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature. 2001 Aug 30;412(6850):904–907. doi: 10.1038/35091062. [DOI] [PubMed] [Google Scholar]
- Hofker M. H., Skraastad M. I., Bergen A. A., Wapenaar M. C., Bakker E., Millington-Ward A., van Ommen G. J., Pearson P. L. The X chromosome shows less genetic variation at restriction sites than the autosomes. Am J Hum Genet. 1986 Oct;39(4):438–451. [PMC free article] [PubMed] [Google Scholar]
- Kliman R. M., Andolfatto P., Coyne J. A., Depaulis F., Kreitman M., Berry A. J., McCarter J., Wakeley J., Hey J. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics. 2000 Dec;156(4):1913–1931. doi: 10.1093/genetics/156.4.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondrashov A. S., Kondrashov F. A. Interactions among quantitative traits in the course of sympatric speciation. Nature. 1999 Jul 22;400(6742):351–354. doi: 10.1038/22514. [DOI] [PubMed] [Google Scholar]
- Machado Carlos A., Hey Jody. The causes of phylogenetic conflict in a classic Drosophila species group. Proc Biol Sci. 2003 Jun 7;270(1520):1193–1202. doi: 10.1098/rspb.2003.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machado Carlos A., Kliman Richard M., Markert Jeffrey A., Hey Jody. Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol. 2002 Apr;19(4):472–488. doi: 10.1093/oxfordjournals.molbev.a004103. [DOI] [PubMed] [Google Scholar]
- Manly K. F., Olson J. M. Overview of QTL mapping software and introduction to map manager QT. Mamm Genome. 1999 Apr;10(4):327–334. doi: 10.1007/s003359900997. [DOI] [PubMed] [Google Scholar]
- Naisbit Russell E., Jiggins Chris D., Mallet James. Mimicry: developmental genes that contribute to speciation. Evol Dev. 2003 May-Jun;5(3):269–280. doi: 10.1046/j.1525-142x.2003.03034.x. [DOI] [PubMed] [Google Scholar]
- Navarro Arcadi, Barton Nick H. Chromosomal speciation and molecular divergence--accelerated evolution in rearranged chromosomes. Science. 2003 Apr 11;300(5617):321–324. doi: 10.1126/science.1080600. [DOI] [PubMed] [Google Scholar]
- Parsons Y. M., Shaw K. L. Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Mol Ecol. 2001 Jul;10(7):1765–1772. doi: 10.1046/j.1365-294x.2001.01318.x. [DOI] [PubMed] [Google Scholar]
- Rieseberg L. H., Whitton J., Gardner K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics. 1999 Jun;152(2):713–727. doi: 10.1093/genetics/152.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Ting C. T., Tsaur S. C., Wu C. I. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313–5316. doi: 10.1073/pnas.090541597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma. 1976 Nov 19;58(3):275–284. doi: 10.1007/BF00292094. [DOI] [PubMed] [Google Scholar]
- Turelli M., Barton N. H., Coyne J. A. Theory and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):330–343. doi: 10.1016/s0169-5347(01)02177-2. [DOI] [PubMed] [Google Scholar]
- Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol. 2001 Jul 1;16(7):381–390. doi: 10.1016/s0169-5347(01)02188-7. [DOI] [PubMed] [Google Scholar]
- Vitalis R., Dawson K., Boursot P. Interpretation of variation across marker loci as evidence of selection. Genetics. 2001 Aug;158(4):1811–1823. doi: 10.1093/genetics/158.4.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]