Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jan 22;271(1535):113–122. doi: 10.1098/rspb.2003.2549

An ecological perspective on bacterial biodiversity.

M Claire Horner-Devine 1, Karen M Carney 1, Brendan J M Bohannan 1
PMCID: PMC1691570  PMID: 15058386

Abstract

Bacteria may be one of the most abundant and species-rich groups of organisms, and they mediate many critical ecosystem processes. Despite the ecological importance of bacteria, past practical and theoretical constraints have limited our ability to document patterns of bacterial diversity and to understand the processes that determine these patterns. However, recent advances in molecular techniques that allow more thorough detection of bacteria in nature have made it possible to examine such patterns and processes. Here, we review recent studies of the distribution of free-living bacterial diversity and compare our current understanding with what is known about patterns in plant and animal diversity. From these recent studies a preliminary picture is emerging: bacterial diversity may exhibit regular patterns, and in some cases these patterns may be qualitatively similar to those observed for plants and animals.

Full Text

The Full Text of this article is available as a PDF (283.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antón J., Rosselló-Mora R., Rodríguez-Valera F., Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 2000 Jul;66(7):3052–3057. doi: 10.1128/aem.66.7.3052-3057.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bogdanova E. S., Bass I. A., Minakhin L. S., Petrova M. A., Mindlin S. Z., Volodin A. A., Kalyaeva E. S., Tiedje J. M., Hobman J. L., Brown N. L. Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiology. 1998 Mar;144(Pt 3):609–620. doi: 10.1099/00221287-144-3-609. [DOI] [PubMed] [Google Scholar]
  4. Bohannan Brendan J. M., Hughes Jennifer. New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol. 2003 Jun;6(3):282–287. doi: 10.1016/s1369-5274(03)00055-9. [DOI] [PubMed] [Google Scholar]
  5. Borneman J., Triplett E. W. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol. 1997 Jul;63(7):2647–2653. doi: 10.1128/aem.63.7.2647-2653.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brock T. D., Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969 Apr;98(1):289–297. doi: 10.1128/jb.98.1.289-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruce K. D., Osborn A. M., Pearson A. J., Strike P., Ritchie D. A. Genetic diversity within mer genes directly amplified from communities of noncultivated soil and sediment bacteria. Mol Ecol. 1995 Oct;4(5):605–612. doi: 10.1111/j.1365-294x.1995.tb00260.x. [DOI] [PubMed] [Google Scholar]
  8. Buckley D.H., Schmidt T.M. The Structure of Microbial Communities in Soil and the Lasting Impact of Cultivation. Microb Ecol. 2001 Jul;42(1):11–21. doi: 10.1007/s002480000108. [DOI] [PubMed] [Google Scholar]
  9. Buckling A., Kassen R., Bell G., Rainey P. B. Disturbance and diversity in experimental microcosms. Nature. 2000 Dec 21;408(6815):961–964. doi: 10.1038/35050080. [DOI] [PubMed] [Google Scholar]
  10. Cho J. C., Tiedje J. M. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol. 2000 Dec;66(12):5448–5456. doi: 10.1128/aem.66.12.5448-5456.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christner B. C., Mosley-Thompson E., Thompson L. G., Reeve J. N. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol. 2001 Sep;3(9):570–577. doi: 10.1046/j.1462-2920.2001.00226.x. [DOI] [PubMed] [Google Scholar]
  12. Cohan Frederick M. What are bacterial species? Annu Rev Microbiol. 2002 Jan 30;56:457–487. doi: 10.1146/annurev.micro.56.012302.160634. [DOI] [PubMed] [Google Scholar]
  13. Connell J. H. Diversity in tropical rain forests and coral reefs. Science. 1978 Mar 24;199(4335):1302–1310. doi: 10.1126/science.199.4335.1302. [DOI] [PubMed] [Google Scholar]
  14. Dykhuizen D. E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek. 1998 Jan;73(1):25–33. doi: 10.1023/a:1000665216662. [DOI] [PubMed] [Google Scholar]
  15. Felske A, Akkermans ADL. Spatial Homogeneity of Abundant Bacterial 16S rRNA Molecules in Grassland Soils. Microb Ecol. 1998 Jul;36(1):31–36. doi: 10.1007/s002489900090. [DOI] [PubMed] [Google Scholar]
  16. Fierer N., Schimel J. P., Holden P. A. Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol. 2002 Dec 10;45(1):63–71. doi: 10.1007/s00248-002-1007-2. [DOI] [PubMed] [Google Scholar]
  17. Finkel S. E., Kolter R. Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4023–4027. doi: 10.1073/pnas.96.7.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fulthorpe R. R., Rhodes A. N., Tiedje J. M. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl Environ Microbiol. 1998 May;64(5):1620–1627. doi: 10.1128/aem.64.5.1620-1627.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grundmann G. L., Normand P. Microscale diversity of the genus Nitrobacter in soil on the basis of analysis of genes encoding rRNA. Appl Environ Microbiol. 2000 Oct;66(10):4543–4546. doi: 10.1128/aem.66.10.4543-4546.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grundmann GL, Debouzie D. Geostatistical analysis of the distribution of NH(4)(+) and NO(2)(-)-oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol. 2000 Oct 1;34(1):57–62. doi: 10.1111/j.1574-6941.2000.tb00754.x. [DOI] [PubMed] [Google Scholar]
  21. Head IM, Saunders JR, Pickup RW. Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microb Ecol. 1998 Jan;35(1):1–21. doi: 10.1007/s002489900056. [DOI] [PubMed] [Google Scholar]
  22. Hodgson David J., Rainey Paul B., Buckling Angus. Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proc Biol Sci. 2002 Nov 7;269(1506):2277–2283. doi: 10.1098/rspb.2002.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hughes J. B., Hellmann J. J., Ricketts T. H., Bohannan B. J. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001 Oct;67(10):4399–4406. doi: 10.1128/AEM.67.10.4399-4406.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jürgens Klaus, Matz Carsten. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):413–434. doi: 10.1023/a:1020505204959. [DOI] [PubMed] [Google Scholar]
  25. Kassen R., Buckling A., Bell G., Rainey P. B. Diversity peaks at intermediate productivity in a laboratory microcosm. Nature. 2000 Aug 3;406(6795):508–512. doi: 10.1038/35020060. [DOI] [PubMed] [Google Scholar]
  26. Kent Angela D., Triplett Eric W. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol. 2002 Jan 30;56:211–236. doi: 10.1146/annurev.micro.56.012302.161120. [DOI] [PubMed] [Google Scholar]
  27. Kerr Benjamin, Riley Margaret A., Feldman Marcus W., Bohannan Brendan J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002 Jul 11;418(6894):171–174. doi: 10.1038/nature00823. [DOI] [PubMed] [Google Scholar]
  28. Korona R., Nakatsu C. H., Forney L. J., Lenski R. E. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9037–9041. doi: 10.1073/pnas.91.19.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kozdrój J., van Elsas J. D. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods. 2001 Jan;43(3):197–212. doi: 10.1016/s0167-7012(00)00197-4. [DOI] [PubMed] [Google Scholar]
  30. Kuske Cheryl R., Ticknor Lawrence O., Miller Mark E., Dunbar John M., Davis Jody A., Barns Susan M., Belnap Jayne. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol. 2002 Apr;68(4):1854–1863. doi: 10.1128/AEM.68.4.1854-1863.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee M. S. Y. Species concepts and species reality: salvaging a Linnaean rank. J Evol Biol. 2003 Mar;16(2):179–188. doi: 10.1046/j.1420-9101.2003.00520.x. [DOI] [PubMed] [Google Scholar]
  32. Leff LG, McArthur JV, Shimkets LJ. Persistence and Dissemination of Introduced Bacteria in Freshwater Microcosms. Microb Ecol. 1998 Sep;36(2):202–211. doi: 10.1007/s002489900107. [DOI] [PubMed] [Google Scholar]
  33. Li Y., Field P. M., Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997 Sep 26;277(5334):2000–2002. doi: 10.1126/science.277.5334.2000. [DOI] [PubMed] [Google Scholar]
  34. McCaig A. E., Glover L. A., Prosser J. I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol. 1999 Apr;65(4):1721–1730. doi: 10.1128/aem.65.4.1721-1730.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Müller A. K., Westergaard K., Christensen S., Sørensen S. J. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol. 2001 Jun;36(1):11–19. doi: 10.1111/j.1574-6941.2001.tb00821.x. [DOI] [PubMed] [Google Scholar]
  36. Nee S., Holmes E. C., May R. M., Harvey P. H. Extinction rates can be estimated from molecular phylogenies. Philos Trans R Soc Lond B Biol Sci. 1994 Apr 29;344(1307):77–82. doi: 10.1098/rstb.1994.0054. [DOI] [PubMed] [Google Scholar]
  37. Nee S., May R. M., Harvey P. H. The reconstructed evolutionary process. Philos Trans R Soc Lond B Biol Sci. 1994 May 28;344(1309):305–311. doi: 10.1098/rstb.1994.0068. [DOI] [PubMed] [Google Scholar]
  38. Nunan N., Wu K., Young I. M., Crawford J. W., Ritz K. In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microb Ecol. 2002 Oct 14;44(4):296–305. doi: 10.1007/s00248-002-2021-0. [DOI] [PubMed] [Google Scholar]
  39. Nübel U., Garcia-Pichel F., Clavero E., Muyzer G. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol. 2000 Apr;2(2):217–226. doi: 10.1046/j.1462-2920.2000.00094.x. [DOI] [PubMed] [Google Scholar]
  40. Nübel U., Garcia-Pichel F., Kühl M., Muyzer G. Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol. 1999 Feb;65(2):422–430. doi: 10.1128/aem.65.2.422-430.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nüsslein K., Tiedje J. M. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol. 1999 Aug;65(8):3622–3626. doi: 10.1128/aem.65.8.3622-3626.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Palys T., Nakamura L. K., Cohan F. M. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol. 1997 Oct;47(4):1145–1156. doi: 10.1099/00207713-47-4-1145. [DOI] [PubMed] [Google Scholar]
  43. Papke R. Thane, Ramsing Niels B., Bateson Mary M., Ward David M. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003 Aug;5(8):650–659. doi: 10.1046/j.1462-2920.2003.00460.x. [DOI] [PubMed] [Google Scholar]
  44. Piceno YM, Noble PA, Lovell CR. Spatial and Temporal Assessment of Diazotroph Assemblage Composition in Vegetated Salt Marsh Sediments Using Denaturing Gradient Gel Electrophoresis Analysis. Microb Ecol. 1999 Aug;38(2):157–167. doi: 10.1007/s002489900164. [DOI] [PubMed] [Google Scholar]
  45. Price P. B. A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1247–1251. doi: 10.1073/pnas.97.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rainey P. B., Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998 Jul 2;394(6688):69–72. doi: 10.1038/27900. [DOI] [PubMed] [Google Scholar]
  47. Rainey PB, Buckling A, Kassen R, Travisano M. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol. 2000 Jun;15(6):243–247. doi: 10.1016/s0169-5347(00)01871-1. [DOI] [PubMed] [Google Scholar]
  48. Rosselló-Mora R., Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001 Jan;25(1):39–67. doi: 10.1111/j.1574-6976.2001.tb00571.x. [DOI] [PubMed] [Google Scholar]
  49. Rotthauwe J. H., Witzel K. P., Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 1997 Dec;63(12):4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schäfer H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Stackebrandt E, Troussellier M, Guindulain T, Vives-Rego J. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiol Ecol. 2001 Jan;34(3):243–253. doi: 10.1111/j.1574-6941.2001.tb00775.x. [DOI] [PubMed] [Google Scholar]
  51. Shoemaker N. B., Vlamakis H., Hayes K., Salyers A. A. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol. 2001 Feb;67(2):561–568. doi: 10.1128/AEM.67.2.561-568.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sibley C. G., Comstock J. A., Ahlquist J. E. DNA hybridization evidence of hominoid phylogeny: a reanalysis of the data. J Mol Evol. 1990 Mar;30(3):202–236. doi: 10.1007/BF02099992. [DOI] [PubMed] [Google Scholar]
  53. Souza V., Nguyen T. T., Hudson R. R., Piñero D., Lenski R. E. Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8389–8393. doi: 10.1073/pnas.89.17.8389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Spencer P., Bown K. J., Scawen M. D., Atkinson T., Gore M. G. Isolation and characterisation of the glycerol dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1989 Feb 23;994(3):270–279. doi: 10.1016/0167-4838(89)90304-x. [DOI] [PubMed] [Google Scholar]
  55. Staley J. T. Biodiversity: are microbial species threatened? Curr Opin Biotechnol. 1997 Jun;8(3):340–345. doi: 10.1016/s0958-1669(97)80014-6. [DOI] [PubMed] [Google Scholar]
  56. Torsvik V., Daae F. L., Sandaa R. A., Ovreås L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol. 1998 Sep 17;64(1):53–62. doi: 10.1016/s0168-1656(98)00103-5. [DOI] [PubMed] [Google Scholar]
  57. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Torsvik Vigdis, Øvreås Lise, Thingstad Tron Frede. Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science. 2002 May 10;296(5570):1064–1066. doi: 10.1126/science.1071698. [DOI] [PubMed] [Google Scholar]
  59. Treves D. S., Xia B., Zhou J., Tiedje J. M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol. 2002 Nov 6;45(1):20–28. doi: 10.1007/s00248-002-1044-x. [DOI] [PubMed] [Google Scholar]
  60. Vogel J., Normand P., Thioulouse J., Nesme X., Grundmann G. L. Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil. Appl Environ Microbiol. 2003 Mar;69(3):1482–1487. doi: 10.1128/AEM.69.3.1482-1487.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ward D. M., Ferris M. J., Nold S. C., Bateson M. M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev. 1998 Dec;62(4):1353–1370. doi: 10.1128/mmbr.62.4.1353-1370.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ward D. M., Weller R., Bateson M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990 May 3;345(6270):63–65. doi: 10.1038/345063a0. [DOI] [PubMed] [Google Scholar]
  63. Webster Gordon, Embley T. Martin, Prosser James I. Grassland management regimens reduce small-scale heterogeneity and species diversity of beta-proteobacterial ammonia pxidizer populations. Appl Environ Microbiol. 2002 Jan;68(1):20–30. doi: 10.1128/AEM.68.1.20-30.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Whitaker Rachel J., Grogan Dennis W., Taylor John W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003 Jul 24;301(5635):976–978. doi: 10.1126/science.1086909. [DOI] [PubMed] [Google Scholar]
  65. White D. C., Phelps T. J., Onstott T. C. What's up down there? Curr Opin Microbiol. 1998 Jun;1(3):286–290. doi: 10.1016/s1369-5274(98)80031-3. [DOI] [PubMed] [Google Scholar]
  66. Whitman W. B., Coleman D. C., Wiebe W. J. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578–6583. doi: 10.1073/pnas.95.12.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zhou Jizhong, Xia Beicheng, Treves David S., Wu L-Y, Marsh Terry L., O'Neill Robert V., Palumbo Anthony V., Tiedje James M. Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol. 2002 Jan;68(1):326–334. doi: 10.1128/AEM.68.1.326-334.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. von Wintzingerode F., Göbel U. B., Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997 Nov;21(3):213–229. doi: 10.1111/j.1574-6976.1997.tb00351.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES