Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jan 22;271(1535):147–152. doi: 10.1098/rspb.2003.2590

Variation in complex olfactory stimuli and its influence on odour recognition.

Geraldine A Wrigh 1, Brian H Smith 1
PMCID: PMC1691576  PMID: 15058390

Abstract

Natural olfactory stimuli are often complex and highly variable. The olfactory systems of animals are likely to have evolved to use specific features of olfactory stimuli for identification and discrimination. Here, we train honeybees to learn chemically defined odorant mixtures that systematically vary from trial to trial and then examine how they generalize to each odorant present in the mixture. An odorant that was present at a constant concentration in a mixture becomes more representative of the mixture than other variable odorants. We also show that both variation and intensity of a complex olfactory stimulus affect the rate of generalization by honeybees to subsequent olfactory stimuli. These results have implications for the way that all animals perceive and attend to features of olfactory stimuli.

Full Text

The Full Text of this article is available as a PDF (141.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhagavan S., Smith B. H. Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity. Physiol Behav. 1997 Jan;61(1):107–117. doi: 10.1016/s0031-9384(96)00357-5. [DOI] [PubMed] [Google Scholar]
  2. Chandra S., Smith B. H. An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). J Exp Biol. 1998 Nov;201(Pt 22):3113–3121. doi: 10.1242/jeb.201.22.3113. [DOI] [PubMed] [Google Scholar]
  3. Cleland Thomas A., Narla Venkata Anupama. Intensity modulation of olfactory acuity. Behav Neurosci. 2003 Dec;117(6):1434–1440. doi: 10.1037/0735-7044.117.6.1434. [DOI] [PubMed] [Google Scholar]
  4. Daly K. C., Smith B. H. Associative olfactory learning in the moth Manduca sexta. J Exp Biol. 2000 Jul;203(Pt 13):2025–2038. doi: 10.1242/jeb.203.13.2025. [DOI] [PubMed] [Google Scholar]
  5. Devaud J. M., Acebes A., Ferrús A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J Neurosci. 2001 Aug 15;21(16):6274–6282. doi: 10.1523/JNEUROSCI.21-16-06274.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fairhall A. L., Lewen G. D., Bialek W., de Ruyter Van Steveninck R. R. Efficiency and ambiguity in an adaptive neural code. Nature. 2001 Aug 23;412(6849):787–792. doi: 10.1038/35090500. [DOI] [PubMed] [Google Scholar]
  7. Giannaris E. Lela, Cleland Thomas A., Linster Christiane. Intramodal blocking between olfactory stimuli in rats. Physiol Behav. 2002 Apr 15;75(5):717–722. doi: 10.1016/s0031-9384(02)00664-9. [DOI] [PubMed] [Google Scholar]
  8. Hosler J. S., Smith B. H. Blocking and the detection of odor components in blends. J Exp Biol. 2000 Sep;203(Pt 18):2797–2806. doi: 10.1242/jeb.203.18.2797. [DOI] [PubMed] [Google Scholar]
  9. Laurent Gilles. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci. 2002 Nov;3(11):884–895. doi: 10.1038/nrn964. [DOI] [PubMed] [Google Scholar]
  10. Levin R. A., Raguso R. A., McDade L. A. Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry. 2001 Oct;58(3):429–440. doi: 10.1016/s0031-9422(01)00257-6. [DOI] [PubMed] [Google Scholar]
  11. Linster C., Smith B. H. A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav Brain Res. 1997 Aug;87(1):1–14. doi: 10.1016/s0166-4328(96)02271-1. [DOI] [PubMed] [Google Scholar]
  12. Mair R. G. Adaptation of rat olfactory bulb neurones. J Physiol. 1982 May;326:361–369. doi: 10.1113/jphysiol.1982.sp014198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Olsson M. J., Cain W. S. Psychometrics of odor quality discrimination: method for threshold determination. Chem Senses. 2000 Oct;25(5):493–499. doi: 10.1093/chemse/25.5.493. [DOI] [PubMed] [Google Scholar]
  14. Pearce J. M. Similarity and discrimination: a selective review and a connectionist model. Psychol Rev. 1994 Oct;101(4):587–607. doi: 10.1037/0033-295x.101.4.587. [DOI] [PubMed] [Google Scholar]
  15. Pearce John M. Evaluation and development of a connectionist theory of configural learning. Anim Learn Behav. 2002 May;30(2):73–95. doi: 10.3758/bf03192911. [DOI] [PubMed] [Google Scholar]
  16. Pelz C., Gerber B., Menzel R. Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J Exp Biol. 1997 Feb;200(Pt 4):837–847. doi: 10.1242/jeb.200.4.837. [DOI] [PubMed] [Google Scholar]
  17. Pichersky Eran, Gershenzon Jonathan. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 2002 Jun;5(3):237–243. doi: 10.1016/s1369-5266(02)00251-0. [DOI] [PubMed] [Google Scholar]
  18. Potter H., Chorover S. L. Response plasticity in hamster olfactory bulb: peripheral and central processes. Brain Res. 1976 Nov 12;116(3):417–429. doi: 10.1016/0006-8993(76)90490-x. [DOI] [PubMed] [Google Scholar]
  19. Rescorla R. A. Behavioral studies of Pavlovian conditioning. Annu Rev Neurosci. 1988;11:329–352. doi: 10.1146/annurev.ne.11.030188.001553. [DOI] [PubMed] [Google Scholar]
  20. Sakura M., Okada R., Mizunami M. Olfactory discrimination of structurally similar alcohols by cockroaches. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Nov 7;188(10):787–797. doi: 10.1007/s00359-002-0366-y. [DOI] [PubMed] [Google Scholar]
  21. Shepard R. N. Toward a universal law of generalization for psychological science. Science. 1987 Sep 11;237(4820):1317–1323. doi: 10.1126/science.3629243. [DOI] [PubMed] [Google Scholar]
  22. Smith B. H. Analysis of interaction in binary odorant mixtures. Physiol Behav. 1998 Dec 1;65(3):397–407. doi: 10.1016/s0031-9384(98)00142-5. [DOI] [PubMed] [Google Scholar]
  23. Stopfer M., Bhagavan S., Smith B. H., Laurent G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature. 1997 Nov 6;390(6655):70–74. doi: 10.1038/36335. [DOI] [PubMed] [Google Scholar]
  24. Urban Nathaniel N. Lateral inhibition in the olfactory bulb and in olfaction. Physiol Behav. 2002 Dec;77(4-5):607–612. doi: 10.1016/s0031-9384(02)00895-8. [DOI] [PubMed] [Google Scholar]
  25. Wiltrout Charles, Dogra Samriti, Linster Christiane. Configurational and nonconfigurational interactions between odorants in binary mixtures. Behav Neurosci. 2003 Apr;117(2):236–245. doi: 10.1037/0735-7044.117.2.236. [DOI] [PubMed] [Google Scholar]
  26. Wise P. M., Olsson M. J., Cain W. S. Quantification of odor quality. Chem Senses. 2000 Aug;25(4):429–443. doi: 10.1093/chemse/25.4.429. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES