Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Feb 7;271(1536):291–299. doi: 10.1098/rspb.2003.2591

Molecular design of the alpha-keratin composite: insights from a matrix-free model, hagfish slime threads.

Douglas S Fudge 1, John M Gosline 1
PMCID: PMC1691592  PMID: 15058441

Abstract

We performed mechanical tests on a matrix-free keratin model-hagfish slime threads-to test the hypothesis that intermediate filaments (IFs) in hydrated hard alpha-keratins are maintained in a partly dehydrated state. This hypothesis predicts that dry IFs should possess mechanical properties similar to the properties of hydrated hard alpha-keratins, and should swell more than hard alpha-keratins in water. Mechanical and swelling measurements of hagfish threads were consistent with both of these predictions, suggesting that an elastomeric keratin matrix resists IF swelling and keeps IF stiffness and yield stress high. The elastomeric nature of the matrix is indirectly supported by the inability of matrix-free IFs (i.e. slime threads) to recover from post-yield deformation. We propose a general conceptual model of the structural mechanics of IF-based materials that predicts the effects of hydration and cross-linking on stiffness, yield stress and extensibility.

Full Text

The Full Text of this article is available as a PDF (569.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLANK I. H. Factors which influence the water content of the stratum corneum. J Invest Dermatol. 1952 Jun;18(6):433–440. doi: 10.1038/jid.1952.52. [DOI] [PubMed] [Google Scholar]
  2. Downing S. W., Spitzer R. H., Koch E. A., Salo W. L. The hagfish slime gland thread cell. I. A unique cellular system for the study of intermediate filaments and intermediate filament-microtubule interactions. J Cell Biol. 1984 Feb;98(2):653–669. doi: 10.1083/jcb.98.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Downing S. W., Spitzer R. H., Salo W. L., Downing J. S., Saidel L. J., Koch E. A. Threads in the hagfish slime gland thread cells: organization, biochemical features, and length. Science. 1981 Apr 17;212(4492):326–328. doi: 10.1126/science.212.4492.326. [DOI] [PubMed] [Google Scholar]
  4. Fraser R. D., Macrae T. P. Molecular structure and mechanical properties of keratins. Symp Soc Exp Biol. 1980;34:211–246. [PubMed] [Google Scholar]
  5. Fudge Douglas S., Gardner Kenn H., Forsyth V. Trevor, Riekel Christian, Gosline John M. The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J. 2003 Sep;85(3):2015–2027. doi: 10.1016/S0006-3495(03)74629-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gillespie J. M., Frenkel M. J. The macroheterogeneity of type I tyrosine-rich proteins of merine wool. Aust J Biol Sci. 1974 Dec;27(6):617–627. doi: 10.1071/bi9740617. [DOI] [PubMed] [Google Scholar]
  7. Gosline J. M., Guerette P. A., Ortlepp C. S., Savage K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol. 1999 Dec;202(Pt 23):3295–3303. doi: 10.1242/jeb.202.23.3295. [DOI] [PubMed] [Google Scholar]
  8. Gosline John, Lillie Margo, Carrington Emily, Guerette Paul, Ortlepp Christine, Savage Ken. Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):121–132. doi: 10.1098/rstb.2001.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hearle J. W. A critical review of the structural mechanics of wool and hair fibres. Int J Biol Macromol. 2000 Apr 12;27(2):123–138. doi: 10.1016/s0141-8130(00)00116-1. [DOI] [PubMed] [Google Scholar]
  10. Koch E. A., Spitzer R. H., Pithawalla R. B., Castillos F. A., 3rd, Parry D. A. Hagfish biopolymer: a type I/type II homologue of epidermal keratin intermediate filaments. Int J Biol Macromol. 1995 Oct;17(5):283–292. doi: 10.1016/0141-8130(95)98156-s. [DOI] [PubMed] [Google Scholar]
  11. Lillie M. A., Gosline J. M. The viscoelastic basis for the tensile strength of elastin. Int J Biol Macromol. 2002 Apr 8;30(2):119–127. doi: 10.1016/s0141-8130(02)00008-9. [DOI] [PubMed] [Google Scholar]
  12. Parry D. A., Steinert P. M. Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys. 1999 May;32(2):99–187. doi: 10.1017/s0033583500003516. [DOI] [PubMed] [Google Scholar]
  13. Spitzer R. H., Koch E. A., Downing S. W. Maturation of hagfish gland thread cells: composition and characterization of intermediate filament polypeptides. Cell Motil Cytoskeleton. 1988;11(1):31–45. doi: 10.1002/cm.970110105. [DOI] [PubMed] [Google Scholar]
  14. Steven A. C., Hainfeld J. F., Trus B. L., Steinert P. M., Wall J. S. Radial distributions of density within macromolecular complexes determined from dark-field electron micrographs. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6363–6367. doi: 10.1073/pnas.81.20.6363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wang H., Parry D. A., Jones L. N., Idler W. W., Marekov L. N., Steinert P. M. In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J Cell Biol. 2000 Dec 25;151(7):1459–1468. doi: 10.1083/jcb.151.7.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES