Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Feb 22;271(1537):353–359. doi: 10.1098/rspb.2003.2588

Post-copulatory sexual selection and female fitness in Scathophaga stercoraria.

Oliver Y Martin 1, David J Hosken 1, Paul I Ward 1
PMCID: PMC1691601  PMID: 15101693

Abstract

Whether sexual selection increases or decreases female fitness is determined by the occurrence and relative importance of sexual-conflict processes and the ability of females to choose high-quality males. Experimentally enforced polyandry and monogamy have previously been shown to cause rapid evolution in the yellow dung fly Scathophaga stercoraria. Flies from polyandrous lines invested more in reproductive tissue, and this investment influenced paternity in sperm competition, but came at a cost to immune function. While some fitness consequences of enforced polyandry or monogamy have been examined when flies mate multiply, the consequences for female fitness when singly copulated remain unexplored. Under a good-genes scenario females from polyandrous lines should be of higher general quality and should outperform females from monogamous lines even with a single copulation. Under sexual conflict, costly adaptations will afford no advantages when females are allowed to mate only once. We investigate the lifetime reproductive success and longevity of females evolving under enforced monogamy or polyandry when mating once with males from these selection regimes. Females from polyandrous lines were found to have lower fitness than their monogamous counterparts when mating once. They died earlier and produced significantly fewer eggs and offspring. These results suggest that sexual conflict probably drove evolution under enforced polyandry as female fitness did not increase overall as expected with purely good-genes effects.

Full Text

The Full Text of this article is available as a PDF (102.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrés J. A., Morrow E. H. The origin of interlocus sexual conflict: is sex-linkage important? J Evol Biol. 2003 Mar;16(2):219–223. doi: 10.1046/j.1420-9101.2003.00525.x. [DOI] [PubMed] [Google Scholar]
  2. Arnqvist G, Nilsson T. The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav. 2000 Aug;60(2):145–164. doi: 10.1006/anbe.2000.1446. [DOI] [PubMed] [Google Scholar]
  3. Arnqvist Göran, Rowe Locke. Antagonistic coevolution between the sexes in a group of insects. Nature. 2002 Feb 14;415(6873):787–789. doi: 10.1038/415787a. [DOI] [PubMed] [Google Scholar]
  4. Cameron E., Day T., Rowes L. Sexual conflict and indirect benefits. J Evol Biol. 2003 Sep;16(5):1055–1060. doi: 10.1046/j.1420-9101.2003.00584.x. [DOI] [PubMed] [Google Scholar]
  5. Cordero C., Eberhard W. G. Female choice of sexually antagonistic male adaptations: a critical review of some current research. J Evol Biol. 2003 Jan;16(1):1–6. doi: 10.1046/j.1420-9101.2003.00506.x. [DOI] [PubMed] [Google Scholar]
  6. Crudgington H. S., Siva-Jothy M. T. Genital damage, kicking and early death. Nature. 2000 Oct 19;407(6806):855–856. doi: 10.1038/35038154. [DOI] [PubMed] [Google Scholar]
  7. Garner T. W., Brinkmann H., Gerlach G., Meyer A., Ward P. I., Spörri M., Hosken D. J. Polymorphic DNA microsatellites identified in the yellow dung fly (Scathophaga stercoraria). Mol Ecol. 2000 Dec;9(12):2207–2209. doi: 10.1046/j.1365-294x.2000.105328.x. [DOI] [PubMed] [Google Scholar]
  8. Gavrilets S., Arnqvist G., Friberg U. The evolution of female mate choice by sexual conflict. Proc Biol Sci. 2001 Mar 7;268(1466):531–539. doi: 10.1098/rspb.2000.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holland Brett. Sexual selection fails to promote adaptation to a new environment. Evolution. 2002 Apr;56(4):721–730. doi: 10.1111/j.0014-3820.2002.tb01383.x. [DOI] [PubMed] [Google Scholar]
  11. Hosken D. J., Blanckenhorn W. U., Garner T. W. J. Heteropopulation males have a fertilization advantage during sperm competition in the yellow dung fly (Scathophaga stercoraria). Proc Biol Sci. 2002 Aug 22;269(1501):1701–1707. doi: 10.1098/rspb.2002.2094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hosken D. J., Garner T. W. J., Tregenza T., Wedell N., Ward P. I. Superior sperm competitors sire higher-quality young. Proc Biol Sci. 2003 Sep 22;270(1527):1933–1938. doi: 10.1098/rspb.2003.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hosken D. J., Garner T. W., Ward P. I. Sexual conflict selects for male and female reproductive characters. Curr Biol. 2001 Apr 3;11(7):489–493. doi: 10.1016/s0960-9822(01)00146-4. [DOI] [PubMed] [Google Scholar]
  14. Hosken D. J. Sex and death: microevolutionary trade-offs between reproductive and immune investment in dung flies. Curr Biol. 2001 May 15;11(10):R379–R380. doi: 10.1016/s0960-9822(01)00211-1. [DOI] [PubMed] [Google Scholar]
  15. Jennions M. D., Petrie M. Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Philos Soc. 2000 Feb;75(1):21–64. doi: 10.1017/s0006323199005423. [DOI] [PubMed] [Google Scholar]
  16. Kirkpatrick M., Barton N. H. The strength of indirect selection on female mating preferences. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1282–1286. doi: 10.1073/pnas.94.4.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kokko Hanna, Brooks Robert, McNamara John M., Houston Alasdair I. The sexual selection continuum. Proc Biol Sci. 2002 Jul 7;269(1498):1331–1340. doi: 10.1098/rspb.2002.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin Oliver Y., Hosken David J. The evolution of reproductive isolation through sexual conflict. Nature. 2003 Jun 26;423(6943):979–982. doi: 10.1038/nature01752. [DOI] [PubMed] [Google Scholar]
  19. Moore A. J., Gowaty P. A., Moore P. J. Females avoid manipulative males and live longer. J Evol Biol. 2003 May;16(3):523–530. doi: 10.1046/j.1420-9101.2003.00527.x. [DOI] [PubMed] [Google Scholar]
  20. Nilsson Tina, Fricke Claudia, Arnqvist Goran. Patterns of divergence in the effects of mating on female reproductive performance in flour beetles. Evolution. 2002 Jan;56(1):111–120. doi: 10.1111/j.0014-3820.2002.tb00853.x. [DOI] [PubMed] [Google Scholar]
  21. doi: 10.1098/rspb.1998.0467. [DOI] [PMC free article] [Google Scholar]
  22. Parker G. A., Partridge L. Sexual conflict and speciation. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):261–274. doi: 10.1098/rstb.1998.0208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pitnick Scott, García-González Francisco. Harm to females increases with male body size in Drosophila melanogaster. Proc Biol Sci. 2002 Sep 7;269(1502):1821–1828. doi: 10.1098/rspb.2002.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pizzari Tommaso, Snook Rhonda R. Perspective: sexual conflict and sexual selection: chasing away paradigm shifts. Evolution. 2003 Jun;57(6):1223–1236. doi: 10.1111/j.0014-3820.2003.tb00331.x. [DOI] [PubMed] [Google Scholar]
  25. Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
  26. Rolff Jens, Siva-Jothy Michael T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci U S A. 2002 Jul 3;99(15):9916–9918. doi: 10.1073/pnas.152271999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Snook R. R. Sexual selection: conflict, kindness and chicanery. Curr Biol. 2001 May 1;11(9):R337–R341. doi: 10.1016/s0960-9822(01)00188-9. [DOI] [PubMed] [Google Scholar]
  28. Tregenza Tom, Wedell Nina, Hosken David J., Ward Paul I. Maternal effects on offspring depend on female mating pattern and offspring environment in yellow dung flies. Evolution. 2003 Feb;57(2):297–304. doi: 10.1111/j.0014-3820.2003.tb00264.x. [DOI] [PubMed] [Google Scholar]
  29. Ward P. I. Cryptic female choice in the yellow dung fly Scathophaga stercoraria (L.). Evolution. 2000 Oct;54(5):1680–1686. doi: 10.1111/j.0014-3820.2000.tb00712.x. [DOI] [PubMed] [Google Scholar]
  30. Welch A. M., Semlitsch R. D., Gerhardt H. C. Call duration as an indicator of genetic quality in male gray tree frogs. Science. 1998 Jun 19;280(5371):1928–1930. doi: 10.1126/science.280.5371.1928. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES