Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Feb 22;271(1537):367–372. doi: 10.1098/rspb.2003.2612

Individual variation and repeatability of basal metabolism in the bank vole, Clethrionomys glareolus.

Marta K Labocha 1, Edyta T Sadowska 1, Katarzyna Baliga 1, Aleksandra K Semer 1, Paweł Koteja 1
PMCID: PMC1691610  PMID: 15101695

Abstract

Basal metabolic rate (BMR) is a fundamental energetic trait and has been measured in hundreds of birds and mammals. Nevertheless, little is known about the consistency of the population-average BMR or its repeatability at the level of individual variation. Here, we report that average mass-independent BMR did not differ between two generations of bank voles or between two trials separated by one month. Individual differences in BMR were highly repeatable across the one month interval: the coefficient of intraclass correlation was 0.70 for absolute log-transformed values and 0.56 for mass-independent values. Thus, BMR can be a meaningful measure of an individual physiological characteristic and can be used to test hypotheses concerning relationships between BMR and other traits. On the other hand, mass-independent BMR did not differ significantly across families, and the coefficient of intraclass correlation for full sibs did not differ from zero, which suggests that heritability of BMR in voles is not high.

Full Text

The Full Text of this article is available as a PDF (147.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A. F., Ruben J. A. Endothermy and activity in vertebrates. Science. 1979 Nov 9;206(4419):649–654. doi: 10.1126/science.493968. [DOI] [PubMed] [Google Scholar]
  2. Chappell MA, Bech C, Buttemer WA. The relationship of central and peripheral organ masses to aerobic performance variation in house sparrows. J Exp Biol. 1999 Sep;202(Pt 17):2269–2279. doi: 10.1242/jeb.202.17.2269. [DOI] [PubMed] [Google Scholar]
  3. Dohm M. R., Hayes J. P., Garland T., Jr The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics. 2001 Sep;159(1):267–277. doi: 10.1093/genetics/159.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garland Jr , T, Ives AR. Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods. Am Nat. 2000 Mar;155(3):346–364. doi: 10.1086/303327. [DOI] [PubMed] [Google Scholar]
  5. Garland T., Jr, Carter P. A. Evolutionary physiology. Annu Rev Physiol. 1994;56:579–621. doi: 10.1146/annurev.ph.56.030194.003051. [DOI] [PubMed] [Google Scholar]
  6. Hayes J. P. Altitudinal and seasonal effects on aerobic metabolism of deer mice. J Comp Physiol B. 1989;159(4):453–459. doi: 10.1007/BF00692417. [DOI] [PubMed] [Google Scholar]
  7. Hochachka Peter W., Darveau Charles-A, Andrews Russel D., Suarez Raul K. Allometric cascade: a model for resolving body mass effects on metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2003 Apr;134(4):675–691. doi: 10.1016/s1095-6433(02)00364-1. [DOI] [PubMed] [Google Scholar]
  8. Koteja P. Energy assimilation, parental care and the evolution of endothermy. Proc Biol Sci. 2000 Mar 7;267(1442):479–484. doi: 10.1098/rspb.2000.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koteja P. On the relation between basal and maximum metabolic rate in mammals. Comp Biochem Physiol A Comp Physiol. 1987;87(1):205–208. doi: 10.1016/0300-9629(87)90447-6. [DOI] [PubMed] [Google Scholar]
  10. Lovegrove B. G. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B. 2003 Feb 7;173(2):87–112. doi: 10.1007/s00360-002-0309-5. [DOI] [PubMed] [Google Scholar]
  11. McNab B. K. Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol. 1988 Mar;63(1):25–54. doi: 10.1086/415715. [DOI] [PubMed] [Google Scholar]
  12. Meerlo P., Bolle L., Visser G. H., Masman D., Daan S. Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis. Physiol Zool. 1997 May-Jun;70(3):362–369. doi: 10.1086/639616. [DOI] [PubMed] [Google Scholar]
  13. Nespolo Roberto F., Arim Matías, Bozinovic Francisco. Body size as a latent variable in a structural equation model: thermal acclimation and energetics of the leaf-eared mouse. J Exp Biol. 2003 Jul;206(Pt 13):2145–2157. doi: 10.1242/jeb.00396. [DOI] [PubMed] [Google Scholar]
  14. Nespolo Roberto F., Bacigalupe Leonardo D., Bozinovic Francisco. Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini). Evolution. 2003 Jul;57(7):1679–1688. doi: 10.1111/j.0014-3820.2003.tb00373.x. [DOI] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1999.0903. [DOI] [PMC free article] [Google Scholar]
  16. White Craig R., Seymour Roger S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A. 2003 Mar 13;100(7):4046–4049. doi: 10.1073/pnas.0436428100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES