Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Mar 7;271(1538):493–500. doi: 10.1098/rspb.2003.2621

Temporal stability of insular avian malarial parasite communities.

S M Fallon 1, R E Ricklefs 1, S C Latta 1, E Bermingham 1
PMCID: PMC1691613  PMID: 15129959

Abstract

Avian malaria is caused by a diverse community of genetically differentiated parasites of the genera Plasmodium and Haemoproteus. Rapid seasonal and annual antigenic allele turnover resulting from selection by host immune systems, as observed in some parasite populations infecting humans, may extend analogously to dynamic species compositions within communities of avian malarial parasites. To address this issue, we examined the stability of avian malarial parasite lineages across multiple time-scales within two insular host communities. Parasite communities in Puerto Rico and St Lucia included 20 and 14 genetically distinct parasite lineages, respectively. Lineage composition of the parasite community in Puerto Rico did not vary seasonally or over a 1 year interval. However, over intervals approaching a decade, the avian communities of both islands experienced an apparent loss or gain of one malarial parasite lineage, indicating the potential for relatively frequent lineage turnover. Patterns of temporal variation of parasite lineages in this study suggest periodic colonization and extinction events driven by a combination of host-specific immune responses, competition between lineages and drift. However, the occasional and ecologically dynamic lineage turnover exhibited by insular avian parasite communities is not as rapid as antigenic allele turnover within populations of human malaria.

Full Text

The Full Text of this article is available as a PDF (111.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. Why microbial predators and parasites do not eliminate their prey and hosts. Annu Rev Microbiol. 1981;35:113–133. doi: 10.1146/annurev.mi.35.100181.000553. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. M., May R. M. Coevolution of hosts and parasites. Parasitology. 1982 Oct;85(Pt 2):411–426. doi: 10.1017/s0031182000055360. [DOI] [PubMed] [Google Scholar]
  3. Babiker H. A., Satti G., Walliker D. Genetic changes in the population of Plasmodium falciparum in a Sudanese village over a three-year period. Am J Trop Med Hyg. 1995 Jul;53(1):7–15. [PubMed] [Google Scholar]
  4. Bensch S., Stjernman M., Hasselquist D., Ostman O., Hansson B., Westerdahl H., Pinheiro R. T. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc Biol Sci. 2000 Aug 7;267(1452):1583–1589. doi: 10.1098/rspb.2000.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bensch Staffan, Akesson Susanne. Temporal and spatial variation of hematozoans in Scandinavian willow warblers. J Parasitol. 2003 Apr;89(2):388–391. doi: 10.1645/0022-3395(2003)089[0388:TASVOH]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  6. Conway D. J., Greenwood B. M., McBride J. S. Longitudinal study of Plasmodium falciparum polymorphic antigens in a malaria-endemic population. Infect Immun. 1992 Mar;60(3):1122–1127. doi: 10.1128/iai.60.3.1122-1127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deviche P., Greiner E. C., Manteca X. Seasonal and age-related changes in blood parasite prevalence in Dark-eyed Juncos (Junco hyemalis, Aves, Passeriformes). J Exp Zool. 2001 Jun 1;289(7):456–466. doi: 10.1002/jez.1027. [DOI] [PubMed] [Google Scholar]
  8. Escalante A. A., Freeland D. E., Collins W. E., Lal A. A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8124–8129. doi: 10.1073/pnas.95.14.8124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fallon S. M., Ricklefs R. E., Swanson B. L., Bermingham E. Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol. 2003 Oct;89(5):1044–1047. doi: 10.1645/GE-3157. [DOI] [PubMed] [Google Scholar]
  10. Fallon Sylvia M., Bermingham Eldredge, Ricklefs Robert E. Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution. 2003 Mar;57(3):606–615. doi: 10.1111/j.0014-3820.2003.tb01552.x. [DOI] [PubMed] [Google Scholar]
  11. Fonseca D. M., LaPointe D. A., Fleischer R. C. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol Ecol. 2000 Nov;9(11):1803–1814. doi: 10.1046/j.1365-294x.2000.01070.x. [DOI] [PubMed] [Google Scholar]
  12. Forsyth K. P., Anders R. F., Kemp D. J., Alpers M. P. New approaches to the serotypic analysis of the epidemiology of Plasmodium falciparum. Philos Trans R Soc Lond B Biol Sci. 1988 Oct 31;321(1207):485–493. doi: 10.1098/rstb.1988.0104. [DOI] [PubMed] [Google Scholar]
  13. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  14. Jih Debra M., Shapiro Michael, James William D., Levin Marc, Gelfand Joel, Williams Patrick T., Oakey Rebecca J., Fakharzadeh Steven, Seykora John T. Familial basaloid follicular hamartoma: lesional characterization and review of the literature. Am J Dermatopathol. 2003 Apr;25(2):130–137. doi: 10.1097/00000372-200304000-00006. [DOI] [PubMed] [Google Scholar]
  15. Perkins Susan L., Schall Jos J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol. 2002 Oct;88(5):972–978. doi: 10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  16. Richard F. Alexander, Sehgal Ravinder N. M., Jones Hugh I., Smith Thomas B. A comparative analysis of PCR-based detection methods for avaian malaria. J Parasitol. 2002 Aug;88(4):819–822. doi: 10.1645/0022-3395(2002)088[0819:ACAOPB]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  17. Richie T. L. Interactions between malaria parasites infecting the same vertebrate host. Parasitology. 1988 Jun;96(Pt 3):607–639. doi: 10.1017/s0031182000080227. [DOI] [PubMed] [Google Scholar]
  18. Ricklefs Robert E., Fallon Sylvia M. Diversification and host switching in avian malaria parasites. Proc Biol Sci. 2002 May 7;269(1494):885–892. doi: 10.1098/rspb.2001.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schall J. J., Pearson A. R., Perkins S. L. Prevalence of malaria parasites (Plasmodium floridense and Plasmodium azurophilum) infecting a Puerto Rican lizard (Anolis gundlachi): a nine-year study. J Parasitol. 2000 Jun;86(3):511–515. doi: 10.1645/0022-3395(2000)086[0511:POMPPF]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  20. Silva N. S., Silveira L. A., Machado R. L., Póvoa M. M., Ferreira M. U. Temporal and spatial distribution of the variants of merozoite surface protein-1 (MSP-1) in Plasmodium falciparum populations in Brazil. Ann Trop Med Parasitol. 2000 Oct;94(7):675–688. doi: 10.1080/00034983.2000.11813591. [DOI] [PubMed] [Google Scholar]
  21. Staats C. M., Schall J. J. Distribution and abundance of two malarial parasites of the endemic Anolis lizard of Saba Island, Netherlands Antilles. J Parasitol. 1996 Jun;82(3):409–413. [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15129959s01.pdf (516.9KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES