Abstract
Ancient lakes are often collectively viewed as evolutionary hot spots of diversification. East Africa's Lake Tanganyika has long been the subject of scientific interest owing to dramatic levels of endemism in species as diverse as cichlid fishes, paludomid gastropods, decapod and ostracod crustaceans and poriferans. It is the largest and deepest of the African rift lakes, and its endemic fauna has been presented with a stable inland environment for over 10 Myr, offering unique opportunities for within-lake diversification. Although astonishing diversification has been documented in the endemic cichlid fauna of the lake, similar patterns of rapid diversification have long been assumed for other groups. In contrast to this hypothesis of rapid speciation, we show here that there has been no acceleration in the rate of speciation in the thalassoid gastropods of the lake following lake colonization. While limited within-lake speciation has occurred, the dramatic conchological diversity of gastropods presently found within the lake has evolved from at least four major lineages that pre-date its formation by as much as 40 Myr. At the same time, a widespread group of African gastropods appears to have evolved from taxa presently found in the lake. While Lake Tanganyika has been a cradle of speciation for cichlid fishes, it has also been an important evolutionary reservoir of gastropod lineages that have been extirpated outside the basin.
Full Text
The Full Text of this article is available as a PDF (292.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294–299. [PubMed] [Google Scholar]
- Huelsenbeck J. P., Rannala B. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 1997 Apr 11;276(5310):227–232. doi: 10.1126/science.276.5310.227. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
- Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
- Lydeard Charles, Holznagel Wallace E., Glaubrecht Matthias, Ponder Winston F. Molecular phylogeny of a circum-global, diverse gastropod superfamily (Cerithioidea: Mollusca: Caenogastropoda): pushing the deepest phylogenetic limits of mitochondrial LSU rDNA sequences. Mol Phylogenet Evol. 2002 Mar;22(3):399–406. doi: 10.1006/mpev.2001.1072. [DOI] [PubMed] [Google Scholar]
- Meyer A., Kocher T. D., Basasibwaki P., Wilson A. C. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature. 1990 Oct 11;347(6293):550–553. doi: 10.1038/347550a0. [DOI] [PubMed] [Google Scholar]
- Nee S., Holmes E. C., May R. M., Harvey P. H. Extinction rates can be estimated from molecular phylogenies. Philos Trans R Soc Lond B Biol Sci. 1994 Apr 29;344(1307):77–82. doi: 10.1098/rstb.1994.0054. [DOI] [PubMed] [Google Scholar]
- Nee S., May R. M., Harvey P. H. The reconstructed evolutionary process. Philos Trans R Soc Lond B Biol Sci. 1994 May 28;344(1309):305–311. doi: 10.1098/rstb.1994.0068. [DOI] [PubMed] [Google Scholar]
- Nee S., Mooers A. O., Harvey P. H. Tempo and mode of evolution revealed from molecular phylogenies. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8322–8326. doi: 10.1073/pnas.89.17.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Pybus O. G., Harvey P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci. 2000 Nov 22;267(1459):2267–2272. doi: 10.1098/rspb.2000.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid D. G., Rumbak E., Thomas R. H. DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc Lond B Biol Sci. 1996 Jul 29;351(1342):877–895. doi: 10.1098/rstb.1996.0082. [DOI] [PubMed] [Google Scholar]
- Roy K., Balch D. P., Hellberg M. E. Spatial patterns of morphological diversity across the Indo-Pacific: analyses using strombid gastropods. Proc Biol Sci. 2001 Dec 22;268(1485):2503–2508. doi: 10.1098/rspb.2000.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Salzburger Walter, Meyer Axel, Baric Sanja, Verheyen Erik, Sturmbauer Christian. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Syst Biol. 2002 Feb;51(1):113–135. doi: 10.1080/106351502753475907. [DOI] [PubMed] [Google Scholar]
- Takezaki N., Rzhetsky A., Nei M. Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol. 1995 Sep;12(5):823–833. doi: 10.1093/oxfordjournals.molbev.a040259. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trussell G. C., Smith L. D. Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2123–2127. doi: 10.1073/pnas.040423397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winnepenninckx B., Backeljau T., De Wachter R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993 Dec;9(12):407–407. doi: 10.1016/0168-9525(93)90102-n. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.