Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Apr 7;271(1540):675–680. doi: 10.1098/rspb.2003.2639

Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi.

Mairi E Knight 1, George F Turner 1
PMCID: PMC1691644  PMID: 15209099

Abstract

It has been suggested that sexual selection may have played a major role in the rapid evolution of hundreds of species of cichlid fishes in Lake Malawi. We report the results of a laboratory test of assortative mating among Lake Malawi cichlid fishes from five closely related geographical populations differing in male courtship colour. Paternity of clutches was tested using microsatellite DNA typing of offspring. Out of 1955 offspring typed, 1296 (66.3%) were sired by the male from the same population as the female, which is more than three times the rate expected if females do not differentiate among males of the different populations (20%). This result indicates that mate preferences of geographical races are strongly differentiated, consistent with the races representing incipient geographical species diverging under sexual selection exerted by female preferences for different male courtship colours.

Full Text

The Full Text of this article is available as a PDF (362.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bunting R. W. The Dentist-Anesthesiologist in Civil Defense. J Am Dent Soc Anesthesiol. 1958 Jan;5(1):7–10. [PMC free article] [PubMed] [Google Scholar]
  2. Craig J. K., Foote C. J. Countergradient variation and secondary sexual color: phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution. 2001 Feb;55(2):380–391. doi: 10.1111/j.0014-3820.2001.tb01301.x. [DOI] [PubMed] [Google Scholar]
  3. Gage Matthew J. G., Parker Geoffrey A., Nylin Soren, Wiklund Christer. Sexual selection and speciation in mammals, butterflies and spiders. Proc Biol Sci. 2002 Nov 22;269(1507):2309–2316. doi: 10.1098/rspb.2002.2154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Higashi M., Takimoto G., Yamamura N. Sympatric speciation by sexual selection. Nature. 1999 Dec 2;402(6761):523–526. doi: 10.1038/990087. [DOI] [PubMed] [Google Scholar]
  5. Lande R. Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721–3725. doi: 10.1073/pnas.78.6.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Llopart Ana, Elwyn Susannah, Lachaise Daniel, Coyne Jerry A. Genetics of a difference in pigmentation between Drosophila yakuba and Drosophila santomea. Evolution. 2002 Nov;56(11):2262–2277. doi: 10.1111/j.0014-3820.2002.tb00150.x. [DOI] [PubMed] [Google Scholar]
  7. Magurran A. E. Sexual conflict and evolution in Trinidadian guppies. Genetica. 2001;112-113:463–474. [PubMed] [Google Scholar]
  8. Masta Susan E., Maddison Wayne P. Sexual selection driving diversification in jumping spiders. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4442–4447. doi: 10.1073/pnas.072493099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McMillan W. O., Jiggins C. D., Mallet J. What initiates speciation in passion-vine butterflies? Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8628–8633. doi: 10.1073/pnas.94.16.8628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Naisbit R. E., Jiggins C. D., Mallet J. Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene. Proc Biol Sci. 2001 Sep 7;268(1478):1849–1854. doi: 10.1098/rspb.2001.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. doi: 10.1098/rstb.1998.0207. [DOI] [PMC free article] [Google Scholar]
  12. Panhuis T. M., Butlin R., Zuk M., Tregenza T. Sexual selection and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):364–371. doi: 10.1016/s0169-5347(01)02160-7. [DOI] [PubMed] [Google Scholar]
  13. Rico C., Bouteillon P., Van Oppen M. J. H., Knight M. E., Hewitt G. M., Turner G. F. No evidence for parallel sympatric speciation in cichlid species of the genus Pseudotropheus from north-western Lake Malawi. J Evol Biol. 2003 Jan;16(1):37–46. doi: 10.1046/j.1420-9101.2003.00477.x. [DOI] [PubMed] [Google Scholar]
  14. Smith Peter F., Kornfield Irv. Phylogeography of Lake Malawi cichlids of the genus Pseudotropheus: significance of allopatric colour variation. Proc Biol Sci. 2002 Dec 22;269(1509):2495–2502. doi: 10.1098/rspb.2002.2188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sturmbauer C., Baric S., Salzburger W., Rüber L., Verheyen E. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol Biol Evol. 2001 Feb;18(2):144–154. doi: 10.1093/oxfordjournals.molbev.a003788. [DOI] [PubMed] [Google Scholar]
  16. Turelli M., Barton N. H., Coyne J. A. Theory and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):330–343. doi: 10.1016/s0169-5347(01)02177-2. [DOI] [PubMed] [Google Scholar]
  17. Turner G. F., Seehausen O., Knight M. E., Allender C. J., Robinson R. L. How many species of cichlid fishes are there in African lakes? Mol Ecol. 2001 Mar;10(3):793–806. doi: 10.1046/j.1365-294x.2001.01200.x. [DOI] [PubMed] [Google Scholar]
  18. van Oppen M. J., Rico C., Deutsch J. C., Turner G. F., Hewitt G. M. Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra. Mol Ecol. 1997 Apr;6(4):387–388. doi: 10.1046/j.1365-294x.1997.00188.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES