Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Apr 7;271(1540):739–744. doi: 10.1098/rspb.2003.2657

Virulence reaction norms across a food gradient.

Stephanie Bedhomme 1, Philip Agnew 1, Christine Sidobre 1, Yannis Michalakis 1
PMCID: PMC1691653  PMID: 15209108

Abstract

Host-parasite interactions involve competition for nutritional resources between hosts and the parasites growing within them. Consuming part of a host's resources is one cause of a parasite's virulence, i.e. part of the fitness cost imposed on the host by the parasite. The influence of a host's nutritional conditions on the virulence of a parasite was experimentally tested using the mosquito Aedes aegypti and the microsporidian parasite Vavraia culicis. A condition-dependent expression of virulence was found and a positive relation between virulence and transmissibility was established. Spore production was positively influenced by host food availability, indicating that the parasite's within-host growth is limited by host condition. We also investigated how the fitness of each partner varied across the nutritional gradient and demonstrated that the sign of the correlation between host fitness and parasite fitness depended on the amount of nutritional resources available to the host.

Full Text

The Full Text of this article is available as a PDF (117.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedhomme S., Agnew P., Sidobre C., Michalakis Y. Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. J Evol Biol. 2003 Jul;16(4):721–730. doi: 10.1046/j.1420-9101.2003.00576.x. [DOI] [PubMed] [Google Scholar]
  2. COLLESS D. H., CHELLAPAH W. T. Effects of body weight and size of blood-meal upon egg production in Aedes aegypti (Linnaeus) (Diptera, Culicidae). Ann Trop Med Parasitol. 1960 Dec;54:475–482. doi: 10.1080/00034983.1960.11686010. [DOI] [PubMed] [Google Scholar]
  3. Chambers G. M., Klowden M. J. Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes. J Am Mosq Control Assoc. 1990 Sep;6(3):394–399. [PubMed] [Google Scholar]
  4. Dunn A. M., Smith J. E. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 2001 Apr;3(5):381–388. doi: 10.1016/s1286-4579(01)01394-6. [DOI] [PubMed] [Google Scholar]
  5. Ferguson H. M., Read A. F. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc Biol Sci. 2002 Jun 22;269(1497):1217–1224. doi: 10.1098/rspb.2002.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilpin M. E., McClelland G. A. Systems analysis of the yellow fever mosquito Aedes aegypti. Fortschr Zool. 1979;25(2-3):355–388. [PubMed] [Google Scholar]
  7. Hausermann W., Nijhout H. F. Permanent loss of male fecundity following sperm depletion in Aedes aegypti (L.). J Med Entomol. 1975 Jan 10;11(6):707–715. doi: 10.1093/jmedent/11.6.707. [DOI] [PubMed] [Google Scholar]
  8. Lansdowne C., Hacker C. S. The effect of fluctuating temperature and humidity on the adult life table characteristics of five strains of Aedes aegypti. J Med Entomol. 1975 Jan 10;11(6):723–733. doi: 10.1093/jmedent/11.6.723. [DOI] [PubMed] [Google Scholar]
  9. Lipsitch M., Moxon E. R. Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 1997 Jan;5(1):31–37. doi: 10.1016/S0966-842X(97)81772-6. [DOI] [PubMed] [Google Scholar]
  10. Norozian-Amiri S. M., Behnke J. M. Density-dependent regulation of the growth of the hookworms Necator americanus and Ancylostoma ceylanicum. Parasitology. 1994 Jul;109(Pt 1):119–128. doi: 10.1017/s0031182000077829. [DOI] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1999.0728. [DOI] [PMC free article] [Google Scholar]
  12. Plaistow S. J., Troussard J. P., Cézilly F. The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. Int J Parasitol. 2001 Apr;31(4):346–351. doi: 10.1016/s0020-7519(01)00115-1. [DOI] [PubMed] [Google Scholar]
  13. Southwood T. R., Murdie G., Yasuno M., Tonn R. J., Reader P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ. 1972;46(2):211–226. [PMC free article] [PubMed] [Google Scholar]
  14. Thomas Frédéric, Brown Sam P., Sukhdeo Michael, Renaud François. Understanding parasite strategies: a state-dependent approach? Trends Parasitol. 2002 Sep;18(9):387–390. doi: 10.1016/s1471-4922(02)02339-5. [DOI] [PubMed] [Google Scholar]
  15. Trpis M., Hausermann W. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg. 1986 Nov;35(6):1263–1279. doi: 10.4269/ajtmh.1986.35.1263. [DOI] [PubMed] [Google Scholar]
  16. Washburn J. O. Regulatory factors affecting larval mosquito populations in container and pool habitats: implications for biological control. J Am Mosq Control Assoc. 1995 Jun;11(2 Pt 2):279–283. [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES