Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Apr 22;271(1541):785–788. doi: 10.1098/rspb.2004.2676

Interference competition and parasite virulence.

Ruth C Massey 1, Angus Buckling 1, Richard ffrench-Constant 1
PMCID: PMC1691666  PMID: 15255095

Abstract

Within-host competition between parasites, a consequence of infection by multiple strains, is predicted to favour rapid host exploitation and greater damage to hosts (virulence). However, the inclusion of biological variables can drastically change this relationship. For example, if competing parasite strains produce toxins that kill each other (interference competition), their growth rates and virulence may be reduced relative to single-strain infections. Bacteriocins are antimicrobial toxins produced by bacteria that target closely related strains and species, and to which the producing strain is immune. We investigated competition between bacteriocin-producing, insect-killing bacteria (Photorhabdus and Xenorhabdus) and how this competition affected virulence in caterpillars. Where one strain could kill the other, and not vice versa, the non-killing strain was competitively excluded, and insect mortality was the same as that of the killing strain alone. However, when caterpillars were multiply infected by strains that could kill each other, we did not observe competitive exclusion and their virulence was less than single-strain infections. The ubiquity and diversity of bacteriocins among pathogenic bacteria suggest mixed infections will be, on average, less virulent than single infections.

Full Text

The Full Text of this article is available as a PDF (358.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremermann H. J., Pickering J. A game-theoretical model of parasite virulence. J Theor Biol. 1983 Feb 7;100(3):411–426. doi: 10.1016/0022-5193(83)90438-1. [DOI] [PubMed] [Google Scholar]
  2. Brown Sam P., Hochberg Michael E., Grenfell Bryan T. Does multiple infection select for raised virulence? Trends Microbiol. 2002 Sep;10(9):401–405. doi: 10.1016/s0966-842x(02)02413-7. [DOI] [PubMed] [Google Scholar]
  3. Chao L., Hanley K. A., Burch C. L., Dahlberg C., Turner P. E. Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Q Rev Biol. 2000 Sep;75(3):261–275. doi: 10.1086/393499. [DOI] [PubMed] [Google Scholar]
  4. Cohan Frederick M. What are bacterial species? Annu Rev Microbiol. 2002 Jan 30;56:457–487. doi: 10.1146/annurev.micro.56.012302.160634. [DOI] [PubMed] [Google Scholar]
  5. Czárán Tamás L., Hoekstra Rolf F. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc Biol Sci. 2003 Jul 7;270(1522):1373–1378. doi: 10.1098/rspb.2003.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Czárán Tamás L., Hoekstra Rolf F., Pagie Ludo. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A. 2002 Jan 15;99(2):786–790. doi: 10.1073/pnas.012399899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies C. M., Fairbrother E., Webster J. P. Mixed strain schistosome infections of snails and the evolution of parasite virulence. Parasitology. 2002 Jan;124(Pt 1):31–38. doi: 10.1017/s0031182001008873. [DOI] [PubMed] [Google Scholar]
  8. Durrett R, Levin S. Allelopathy in Spatially Distributed Populations. J Theor Biol. 1997 Mar 21;185(2):165–171. doi: 10.1006/jtbi.1996.0292. [DOI] [PubMed] [Google Scholar]
  9. Forst S., Dowds B., Boemare N., Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol. 1997;51:47–72. doi: 10.1146/annurev.micro.51.1.47. [DOI] [PubMed] [Google Scholar]
  10. Frank S. A. A kin selection model for the evolution of virulence. Proc Biol Sci. 1992 Dec 22;250(1329):195–197. doi: 10.1098/rspb.1992.0149. [DOI] [PubMed] [Google Scholar]
  11. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  12. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  13. Kerr Benjamin, Riley Margaret A., Feldman Marcus W., Bohannan Brendan J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002 Jul 11;418(6894):171–174. doi: 10.1038/nature00823. [DOI] [PubMed] [Google Scholar]
  14. Pagie L., Hogeweg P. Colicin diversity: a result of eco-evolutionary dynamics. J Theor Biol. 1999 Jan 21;196(2):251–261. doi: 10.1006/jtbi.1998.0838. [DOI] [PubMed] [Google Scholar]
  15. Riley M. A., Goldstone C. M., Wertz J. E., Gordon D. A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol. 2003 Jul;16(4):690–697. doi: 10.1046/j.1420-9101.2003.00575.x. [DOI] [PubMed] [Google Scholar]
  16. Riley Margaret A., Wertz John E. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002 Jan 30;56:117–137. doi: 10.1146/annurev.micro.56.012302.161024. [DOI] [PubMed] [Google Scholar]
  17. Schjørring Solveig, Koella Jacob C. Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc Biol Sci. 2003 Jan 22;270(1511):189–193. doi: 10.1098/rspb.2002.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sharma Sadhana, Waterfield Nicholas, Bowen David, Rocheleau Thomas, Holland Lisa, James Richard, ffrench-Constant Richard. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett. 2002 Sep 10;214(2):241–249. doi: 10.1111/j.1574-6968.2002.tb11354.x. [DOI] [PubMed] [Google Scholar]
  19. Turner P. E., Chao L. Prisoner's dilemma in an RNA virus. Nature. 1999 Apr 1;398(6726):441–443. doi: 10.1038/18913. [DOI] [PubMed] [Google Scholar]
  20. Waterfield Nicholas R., Daborn Phillip J., Dowling Andrea J., Yang Guowei, Hares Michelle, ffrench-Constant Richard H. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiol Lett. 2003 Dec 12;229(2):265–270. doi: 10.1016/S0378-1097(03)00846-2. [DOI] [PubMed] [Google Scholar]
  21. West Stuart A., Buckling Angus. Cooperation, virulence and siderophore production in bacterial parasites. Proc Biol Sci. 2003 Jan 7;270(1510):37–44. doi: 10.1098/rspb.2002.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES