Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 May 7;271(1542):909–918. doi: 10.1098/rspb.2004.2683

Postural role of lateral axial muscles in developing bottlenose dolphins (Tursiops truncatus).

Shelley A Etnier 1, Jennifer L Dearolf 1, William A McLellan 1, D Ann Pabst 1
PMCID: PMC1691682  PMID: 15255045

Abstract

Foetal dolphins (Tursiops truncatus) are bent ventrolaterally, such that the tailflukes and lower jaw are juxtaposed. The lateral flexibility required en utero may compromise the efficiency of the dorsoventral oscillations required of the swimming neonate. The m. intertransversarius caudae dorsalis (IT) is the most laterally placed epaxial muscle. Bilateral contractions of the IT could limit lateral deformations of the flexible tailstock of the early neonate. We test the hypothesis that the IT is functioning as a postural muscle in neonates by examining its morphological, histological and biochemical properties. The neonatal IT has a relatively large cross-sectional area and bending moment, as well as a large proportion of slow-twitch fibres and elevated myoglobin concentrations. Our results demonstrate that the IT is functionally capable of performing this specific postural function in neonatal dolphins. In later life-history stages, when postural control is no longer needed, the IT serves to fine-tune the position of the tailstock during locomotion. The changing function of the adult IT is concomitant with changes in morphology and biochemistry, and most notably, with an increase in the proportion of fast-twitch fibres. We suggest that these changes reflect strong selective pressure to improve locomotor abilities by limiting lateral deformations during this critical life-history stage.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooke M. H., Kaiser K. K. Muscle fiber types: how many and what kind? Arch Neurol. 1970 Oct;23(4):369–379. doi: 10.1001/archneur.1970.00480280083010. [DOI] [PubMed] [Google Scholar]
  2. Cobb M. A., Schutt W. A., Jr, Petrie J. L., Hermanson J. W. Neonatal development of the diaphragm of the horse, Equus caballus. Anat Rec. 1994 Mar;238(3):311–316. doi: 10.1002/ar.1092380305. [DOI] [PubMed] [Google Scholar]
  3. Dearolf J. L. Diaphragm muscle development in bottlenose dolphins (Tursiops truncatus). J Morphol. 2003 Apr;256(1):79–88. doi: 10.1002/jmor.10077. [DOI] [PubMed] [Google Scholar]
  4. Dearolf J. L., McLellan W. A., Dillaman R. M., Frierson D., Jr, Pabst D. A. Precocial development of axial locomotor muscle in bottlenose dolphins (Tursiops truncatus). J Morphol. 2000 Jun;244(3):203–215. doi: 10.1002/(SICI)1097-4687(200006)244:3<203::AID-JMOR5>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  5. Dolar M. L., Suarez P., Ponganis P. J., Kooyman G. L. Myoglobin in pelagic small cetaceans. J Exp Biol. 1999 Feb;202(Pt 3):227–236. doi: 10.1242/jeb.202.3.227. [DOI] [PubMed] [Google Scholar]
  6. Dubowitz V. Enzyme histochemistry of skeletal muscle. J Neurol Neurosurg Psychiatry. 1965 Dec;28(6):516–524. doi: 10.1136/jnnp.28.6.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gál J. M. Mammalian spinal biomechanics. II. Intervertebral lesion experiments and mechanisms of bending resistance. J Exp Biol. 1993 Jan;174:281–297. doi: 10.1242/jeb.174.1.281. [DOI] [PubMed] [Google Scholar]
  8. Hermanson J. W., Hurley K. J. Architectural and histochemical analysis of the biceps brachii muscle of the horse. Acta Anat (Basel) 1990;137(2):146–156. doi: 10.1159/000146875. [DOI] [PubMed] [Google Scholar]
  9. Long J. H., Jr, Pabst D. A., Shepherd W. R., McLellan W. A. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J Exp Biol. 1997 Jan;200(Pt 1):65–81. doi: 10.1242/jeb.200.1.65. [DOI] [PubMed] [Google Scholar]
  10. Moore Lorna G., Zamudio Stacy, Zhuang Jianguo, Droma Tarshi, Shohet Ralph V. Analysis of the myoglobin gene in Tibetans living at high altitude. High Alt Med Biol. 2002 Spring;3(1):39–47. doi: 10.1089/152702902753639531. [DOI] [PubMed] [Google Scholar]
  11. Noren S. R., Williams T. M. Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp Biochem Physiol A Mol Integr Physiol. 2000 Jun;126(2):181–191. doi: 10.1016/s1095-6433(00)00182-3. [DOI] [PubMed] [Google Scholar]
  12. Noren S. R., Williams T. M., Pabst D. A., McLellan W. A., Dearolf J. L. The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol B. 2001 Mar;171(2):127–134. doi: 10.1007/s003600000161. [DOI] [PubMed] [Google Scholar]
  13. Rubinstein N. A., Kelly A. M. Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat. Dev Biol. 1978 Feb;62(2):473–485. doi: 10.1016/0012-1606(78)90229-4. [DOI] [PubMed] [Google Scholar]
  14. Umezu Y., Hachisuka K., Ueda H., Yoshizuka M., Ogata H., Fujimoto S. Histochemical and immunological analyses of differentiating skeletal muscle fibers of the postnatal rat. Acta Anat (Basel) 1992;143(1):1–6. doi: 10.1159/000147221. [DOI] [PubMed] [Google Scholar]
  15. White N. A., McGavin M. D., Smith J. E. Age-related changes in percentage of fiber types and mean fiber diameters of the ovine quadriceps muscles. Am J Vet Res. 1978 Aug;39(8):1297–1302. [PubMed] [Google Scholar]
  16. Wigston D. J., English A. W. Fiber-type proportions in mammalian soleus muscle during postnatal development. J Neurobiol. 1992 Feb;23(1):61–70. doi: 10.1002/neu.480230107. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES