Abstract
It has been argued that minimization of metabolic-energy costs is a primary determinant of gait selection in terrestrial animals. This view is based predominantly on data from humans and horses, which have been shown to choose the most economical gait (walking, running, galloping) for any given speed. It is not certain whether a minimization of metabolic costs is associated with the selection of other prevalent forms of terrestrial gaits, such as grounded running (a widespread gait in birds). Using biomechanical and metabolic measurements of four ostriches moving on a treadmill over a range of speeds from 0.8 to 6.7 m s(-1), we reveal here that the selection of walking or grounded running at intermediate speeds also favours a reduction in the metabolic cost of locomotion. This gait transition is characterized by a shift in locomotor kinetics from an inverted-pendulum gait to a bouncing gait that lacks an aerial phase. By contrast, when the ostrich adopts an aerial-running gait at faster speeds, there are no abrupt transitions in mechanical parameters or in the metabolic cost of locomotion. These data suggest a continuum between grounded and aerial running, indicating that they belong to the same locomotor paradigm.
Full Text
The Full Text of this article is available as a PDF (257.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander R. M. Optimization and gaits in the locomotion of vertebrates. Physiol Rev. 1989 Oct;69(4):1199–1227. doi: 10.1152/physrev.1989.69.4.1199. [DOI] [PubMed] [Google Scholar]
- Belli A., Avela J., Komi P. V. Mechanical energy assessment with different methods during running. Int J Sports Med. 1993 Jul;14(5):252–256. doi: 10.1055/s-2007-1021173. [DOI] [PubMed] [Google Scholar]
- Biewener A. A. Scaling body support in mammals: limb posture and muscle mechanics. Science. 1989 Jul 7;245(4913):45–48. doi: 10.1126/science.2740914. [DOI] [PubMed] [Google Scholar]
- Biewener A. A., Taylor C. R. Bone strain: a determinant of gait and speed? J Exp Biol. 1986 Jul;123:383–400. doi: 10.1242/jeb.123.1.383. [DOI] [PubMed] [Google Scholar]
- Brisswalter J., Mottet D. Energy cost and stride duration variability at preferred transition gait speed between walking and running. Can J Appl Physiol. 1996 Dec;21(6):471–480. doi: 10.1139/h96-041. [DOI] [PubMed] [Google Scholar]
- CAVAGNA G. A., SAIBENE F. P., MARGARIA R. MECHANICAL WORK IN RUNNING. J Appl Physiol. 1964 Mar;19:249–256. doi: 10.1152/jappl.1964.19.2.249. [DOI] [PubMed] [Google Scholar]
- Cavagna G. A., Heglund N. C., Taylor C. R. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol. 1977 Nov;233(5):R243–R261. doi: 10.1152/ajpregu.1977.233.5.R243. [DOI] [PubMed] [Google Scholar]
- Cavagna G. A., Thys H., Zamboni A. The sources of external work in level walking and running. J Physiol. 1976 Nov;262(3):639–657. doi: 10.1113/jphysiol.1976.sp011613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diedrich F. J., Warren W. H., Jr Why change gaits? Dynamics of the walk-run transition. J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):183–202. doi: 10.1037//0096-1523.21.1.183. [DOI] [PubMed] [Google Scholar]
- Donelan J. Maxwell, Kram Rodger, Kuo Arthur D. Simultaneous positive and negative external mechanical work in human walking. J Biomech. 2002 Jan;35(1):117–124. doi: 10.1016/s0021-9290(01)00169-5. [DOI] [PubMed] [Google Scholar]
- Farley C. T., Ko T. C. Mechanics of locomotion in lizards. J Exp Biol. 1997 Aug;200(Pt 16):2177–2188. doi: 10.1242/jeb.200.16.2177. [DOI] [PubMed] [Google Scholar]
- Farley C. T., Taylor C. R. A mechanical trigger for the trot-gallop transition in horses. Science. 1991 Jul 19;253(5017):306–308. doi: 10.1126/science.1857965. [DOI] [PubMed] [Google Scholar]
- Fedak M. A., Heglund N. C., Taylor C. R. Energetics and mechanics of terrestrial locomotion. II. Kinetic energy changes of the limbs and body as a function of speed and body size in birds and mammals. J Exp Biol. 1982 Apr;97:23–40. doi: 10.1242/jeb.97.1.23. [DOI] [PubMed] [Google Scholar]
- Fedak M. A., Rome L., Seeherman H. J. One-step N2-dilution technique for calibrating open-circuit VO2 measuring systems. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):772–776. doi: 10.1152/jappl.1981.51.3.772. [DOI] [PubMed] [Google Scholar]
- Fedak M. A., Seeherman H. J. Reappraisal of energetics of locomotion shows identical cost in bipeds and quadrupeds including ostrich and horse. Nature. 1979 Dec 13;282(5740):713–716. doi: 10.1038/282713a0. [DOI] [PubMed] [Google Scholar]
- Heglund N. C., Cavagna G. A., Taylor C. R. Energetics and mechanics of terrestrial locomotion. III. Energy changes of the centre of mass as a function of speed and body size in birds and mammals. J Exp Biol. 1982 Apr;97:41–56. doi: 10.1242/jeb.97.1.41. [DOI] [PubMed] [Google Scholar]
- Hreljac A. Determinants of the gait transition speed during human locomotion: kinematic factors. J Biomech. 1995 Jun;28(6):669–677. doi: 10.1016/0021-9290(94)00120-s. [DOI] [PubMed] [Google Scholar]
- Hreljac A. Preferred and energetically optimal gait transition speeds in human locomotion. Med Sci Sports Exerc. 1993 Oct;25(10):1158–1162. [PubMed] [Google Scholar]
- Hutchinson John R., Famini Dan, Lair Richard, Kram Rodger. Biomechanics: Are fast-moving elephants really running? Nature. 2003 Apr 3;422(6931):493–494. doi: 10.1038/422493a. [DOI] [PubMed] [Google Scholar]
- Ker R. F., Bennett M. B., Bibby S. R., Kester R. C., Alexander R. M. The spring in the arch of the human foot. Nature. 1987 Jan 8;325(7000):147–149. doi: 10.1038/325147a0. [DOI] [PubMed] [Google Scholar]
- Kerdok Amy E., Biewener Andrew A., McMahon Thomas A., Weyand Peter G., Herr Hugh M. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol (1985) 2002 Feb;92(2):469–478. doi: 10.1152/japplphysiol.01164.2000. [DOI] [PubMed] [Google Scholar]
- Kimura T. Centre of gravity of the body during the ontogeny of chimpanzee bipedal walking. Folia Primatol (Basel) 1996;66(1-4):126–136. doi: 10.1159/000157190. [DOI] [PubMed] [Google Scholar]
- Kram R., Domingo A., Ferris D. P. Effect of reduced gravity on the preferred walk-run transition speed. J Exp Biol. 1997 Feb;200(Pt 4):821–826. doi: 10.1242/jeb.200.4.821. [DOI] [PubMed] [Google Scholar]
- Kram R., Taylor C. R. Energetics of running: a new perspective. Nature. 1990 Jul 19;346(6281):265–267. doi: 10.1038/346265a0. [DOI] [PubMed] [Google Scholar]
- McMahon T. A. The role of compliance in mammalian running gaits. J Exp Biol. 1985 Mar;115:263–282. doi: 10.1242/jeb.115.1.263. [DOI] [PubMed] [Google Scholar]
- McMahon T. A., Valiant G., Frederick E. C. Groucho running. J Appl Physiol (1985) 1987 Jun;62(6):2326–2337. doi: 10.1152/jappl.1987.62.6.2326. [DOI] [PubMed] [Google Scholar]
- Minetti A. E., ArdigO L. P., Reinach E., Saibene F. The relationship between mechanical work and energy expenditure of locomotion in horses. J Exp Biol. 1999 Sep;202(Pt 17):2329–2338. doi: 10.1242/jeb.202.17.2329. [DOI] [PubMed] [Google Scholar]
- Minetti A. E., Ardigò L. P., Saibene F. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. Acta Physiol Scand. 1994 Mar;150(3):315–323. doi: 10.1111/j.1748-1716.1994.tb09692.x. [DOI] [PubMed] [Google Scholar]
- Minetti Alberto E., Boldrini Lorenzo, Brusamolin Laura, Zamparo Paola, McKee Tom. A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans. J Appl Physiol (1985) 2003 Apr 11;95(2):838–843. doi: 10.1152/japplphysiol.00128.2003. [DOI] [PubMed] [Google Scholar]
- Muir G. D., Gosline J. M., Steeves J. D. Ontogeny of bipedal locomotion: walking and running in the chick. J Physiol. 1996 Jun 1;493(Pt 2):589–601. doi: 10.1113/jphysiol.1996.sp021406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prilutsky B. I., Gregor R. J. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J Exp Biol. 2001 Jul;204(Pt 13):2277–2287. doi: 10.1242/jeb.204.13.2277. [DOI] [PubMed] [Google Scholar]
- Raynor Annette J., Yi Chow Jia, Abernethy Bruce, Jong Quek Jin. Are transitions in human gait determined by mechanical, kinetic or energetic factors? Hum Mov Sci. 2002 Dec;21(5-6):785–805. doi: 10.1016/s0167-9457(02)00180-x. [DOI] [PubMed] [Google Scholar]
- Roberts T. J., Marsh R. L., Weyand P. G., Taylor C. R. Muscular force in running turkeys: the economy of minimizing work. Science. 1997 Feb 21;275(5303):1113–1115. doi: 10.1126/science.275.5303.1113. [DOI] [PubMed] [Google Scholar]
- Schmitt Daniel. Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol. 2003 May;206(Pt 9):1437–1448. doi: 10.1242/jeb.00279. [DOI] [PubMed] [Google Scholar]
- Verstappen M., Aerts P. Terrestrial locomotion in the black-billed magpie. I. Spatio-temporal gait characteristics. Motor Control. 2000 Apr;4(2):150–164. doi: 10.1123/mcj.4.2.150. [DOI] [PubMed] [Google Scholar]
- Wickler Steven J., Hoyt Donald F., Cogger Edward A., Myers Gregory. The energetics of the trot-gallop transition. J Exp Biol. 2003 May;206(Pt 9):1557–1564. doi: 10.1242/jeb.00276. [DOI] [PubMed] [Google Scholar]
- Withers P. C. Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jan;42(1):120–123. doi: 10.1152/jappl.1977.42.1.120. [DOI] [PubMed] [Google Scholar]