Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 May 22;271(1543):1001–1007. doi: 10.1098/rspb.2004.2675

Occasional sex in an 'asexual' polyploid hermaphrodite.

Thomas G D'Souza 1, Martin Storhas 1, Hinrich Schulenburg 1, Leo W Beukeboom 1, Nicolaas K Michiels 1
PMCID: PMC1691700  PMID: 15293852

Abstract

Asexual populations are usually considered evolutionary dead-ends because they lack the mechanisms to generate and maintain sufficient genetic diversity. Yet, some asexual forms are remarkably widespread and genetically diverse. This raises the question whether asexual systems are always truly clonal or whether they have cryptic forms of sexuality that enhance their viability. In the planarian flatworm Schmidtea polychroa parthenogens are functional hermaphrodites (as are their sexual conspecifics), copulate and exchange sperm. Sperm is required for initiation of embryogenesis but usually does not contribute genetically to the offspring (sperm-dependent parthenogenesis). Using karyology and genotyping of parents and offspring, we show that in a purely parthenogenetic population an estimated 12% of all offspring are the result of partial genetic exchange. Several processes of chromosome addition and loss are involved. Some of these result in an alternation between a common triploid and a rare tetraploid state. We conclude that genetic recombination does not necessarily require segregation and fusion within the same generation, as is the case in most sexual species. These occasional sexual processes help to explain the geographical dominance of parthenogens in our study species.

Full Text

The Full Text of this article is available as a PDF (154.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal A. F. Sexual selection and the maintenance of sexual reproduction. Nature. 2001 Jun 7;411(6838):692–695. doi: 10.1038/35079590. [DOI] [PubMed] [Google Scholar]
  2. Barton N. H., Charlesworth B. Why sex and recombination? Science. 1998 Sep 25;281(5385):1986–1990. [PubMed] [Google Scholar]
  3. Brohede Jesper, Primmer Craig R., Møller Anders, Ellegren Hans. Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Res. 2002 May 1;30(9):1997–2003. doi: 10.1093/nar/30.9.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamilton W. D., Axelrod R., Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990 May;87(9):3566–3573. doi: 10.1073/pnas.87.9.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hedges S. B., Bogart J. P., Maxson L. R. Ancestry of unisexual salamanders. Nature. 1992 Apr 23;356(6371):708–710. doi: 10.1038/356708a0. [DOI] [PubMed] [Google Scholar]
  7. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  8. Kondrashov A. S. Deleterious mutations as an evolutionary factor. II. Facultative apomixis and selfing. Genetics. 1985 Nov;111(3):635–653. doi: 10.1093/genetics/111.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pamilo P., Nei M., Li W. H. Accumulation of mutations in sexual and asexual populations. Genet Res. 1987 Apr;49(2):135–146. doi: 10.1017/s0016672300026938. [DOI] [PubMed] [Google Scholar]
  10. Pongratz Norbert, Storhas Martin, Carranza Salvador, Michiels Nicolaas K. Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evol Biol. 2003 Nov 17;3:23–23. doi: 10.1186/1471-2148-3-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Redi C. A., Garagna S., Pellicciari C. Chromosome preparation from planarian blastemas: a procedure suitable for cytogenetic and cytochemical studies. Stain Technol. 1982 May;57(3):190–192. doi: 10.3109/10520298209066615. [DOI] [PubMed] [Google Scholar]
  12. Rice William R. Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet. 2002 Apr;3(4):241–251. doi: 10.1038/nrg760. [DOI] [PubMed] [Google Scholar]
  13. Sex in diploids. Nature. 1989 Nov 16;342(6247):231–232. doi: 10.1038/342231b0. [DOI] [PubMed] [Google Scholar]
  14. Siller S., Department of Zoology, University of Oxford, UK. steven.siller@zoo.ox.ac.uk Sexual selection and the maintenance of sex. Nature. 2001 Jun 7;411(6838):689–692. doi: 10.1038/35079578. [DOI] [PubMed] [Google Scholar]
  15. Spolsky C. M., Phillips C. A., Uzzell T. Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature. 1992 Apr 23;356(6371):706–708. doi: 10.1038/356706a0. [DOI] [PubMed] [Google Scholar]
  16. von der Schulenburg J. H., Hancock J. M., Pagnamenta A., Sloggett J. J., Majerus M. E., Hurst G. D. Extreme length and length variation in the first ribosomal internal transcribed spacer of ladybird beetles (Coleoptera: Coccinellidae). Mol Biol Evol. 2001 Apr;18(4):648–660. doi: 10.1093/oxfordjournals.molbev.a003845. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES