Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jun 7;271(1544):1175–1183. doi: 10.1098/rspb.2004.2707

Variation in phenoloxidase activity and its relation to parasite resistance within and between populations of Daphnia magna.

Patrick T Mucklow 1, Dita B Vizoso 1, Knut Helge Jensen 1, Dominik Refardt 1, Dieter Ebert 1
PMCID: PMC1691701  PMID: 15306368

Abstract

Estimates of phenoloxidase (PO) activity have been suggested as a useful indicator of immunocompetence in arthropods, with the idea that high PO activity would indicate high immunocompetence against parasites and pathogens. Here, we test for variation in PO activity among clones of the planktonic crustacean Daphnia magna and its covariation with susceptibility to infections from four different microparasite species (one bacterium and three microsporidia). Strong clonal variation in PO activity was found within and among populations of D. magna, with 45.6% of the total variation being explained by the clone effect. Quantitative measures of parasite success in infection correlated negatively with PO activity when tested across four host populations. However, these correlations disappeared when the data were corrected for population effects. We conclude that PO activity is not a useful measure of resistance to parasites or of immunocompetence within populations of D. magna. We further tested whether D. magna females that are wounded to induce PO activity are more resistant to infections with the bacterium Pasteuria ramosa than non-wounded controls. We found neither a difference in susceptibility nor a difference in disease progression between the induced group and the control group. These results do not question the function of the PO system in arthropod immune response, but rather suggest that immunocompetence cannot be assessed by considering PO activity alone. Immune response is likely to be a multifactorial trait with various host and parasite characteristics playing important roles in its expression.

Full Text

The Full Text of this article is available as a PDF (160.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckage N. E. Modulation of immune responses to parasitoids by polydnaviruses. Parasitology. 1998;116 (Suppl):S57–S64. doi: 10.1017/s0031182000084948. [DOI] [PubMed] [Google Scholar]
  2. Carius H. J., Little T. J., Ebert D. Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution. 2001 Jun;55(6):1136–1145. doi: 10.1111/j.0014-3820.2001.tb00633.x. [DOI] [PubMed] [Google Scholar]
  3. Clutton-Brock T. H., Russell A. F., Sharpe L. L., Brotherton P. N., McIlrath G. M., White S., Cameron E. Z. Effects of helpers on juvenile development and survival in meerkats. Science. 2001 Sep 28;293(5539):2446–2449. doi: 10.1126/science.1061274. [DOI] [PubMed] [Google Scholar]
  4. Decaestecker Ellen, De Meester Luc, Ebert Dieter. In deep trouble: habitat selection constrained by multiple enemies in zooplankton. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5481–5485. doi: 10.1073/pnas.082543099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dowd P. F. Relative inhibition of insect phenoloxidase by cyclic fungal metabolites from insect and plant pathogens. Nat Toxins. 1999;7(6):337–341. doi: 10.1002/1522-7189(199911/12)7:6<337::aid-nt69>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  6. Ebert D. Virulence and local adaptation of a horizontally transmitted parasite. Science. 1994 Aug 19;265(5175):1084–1086. doi: 10.1126/science.265.5175.1084. [DOI] [PubMed] [Google Scholar]
  7. FILES V. S., CRAM E. B. A study on the comparative susceptibility of snail vectors to strains of Schistosoma mansoni. J Parasitol. 1949 Dec;35(6):555–560. [PubMed] [Google Scholar]
  8. Gomes S. A., Feder D., Thomas N. E., Garcia E. S., Azambuja P. Rhodnius prolixus infected with Trypanosoma rangeli: In vivo and in vitro experiments. J Invertebr Pathol. 1999 May;73(3):289–293. doi: 10.1006/jipa.1998.4836. [DOI] [PubMed] [Google Scholar]
  9. Hagen H. E., Grunewald J., Ham P. J. Induction of the prophenoloxidase-activating system of Simulium (Diptera: Simuliidae) following Onchocerca (Nematoda: Filarioidea) infection. Parasitology. 1994 Dec;109(Pt 5):649–655. doi: 10.1017/s0031182000076538. [DOI] [PubMed] [Google Scholar]
  10. Kurtz J., Sauer K. P. Gender differences in phenoloxidase activity of Panorpa vulgaris hemocytes. J Invertebr Pathol. 2001 Jul;78(1):53–55. doi: 10.1006/jipa.2001.5040. [DOI] [PubMed] [Google Scholar]
  11. Moret Y., Schmid-Hempel P. Immune defence in bumble-bee offspring. Nature. 2001 Nov 29;414(6863):506–506. doi: 10.1038/35107138. [DOI] [PubMed] [Google Scholar]
  12. Moret Y., Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science. 2000 Nov 10;290(5494):1166–1168. doi: 10.1126/science.290.5494.1166. [DOI] [PubMed] [Google Scholar]
  13. Mucklow Patrick T., Ebert Dieter. Physiology of immunity in the water flea Daphnia magna: environmental and genetic aspects of phenoloxidase activity. Physiol Biochem Zool. 2003 Nov-Dec;76(6):836–842. doi: 10.1086/378917. [DOI] [PubMed] [Google Scholar]
  14. Nigam Y., Maudlin I., Welburn S., Ratcliffe N. A. Detection of phenoloxidase activity in the hemolymph of tsetse flies, refractory and susceptible to infection with Trypanosoma brucei rhodesiense. J Invertebr Pathol. 1997 May;69(3):279–281. doi: 10.1006/jipa.1996.4652. [DOI] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1998.0503. [DOI] [PMC free article] [Google Scholar]
  16. doi: 10.1098/rspb.1998.0549. [DOI] [PMC free article] [Google Scholar]
  17. doi: 10.1098/rspb.1999.0659. [DOI] [PMC free article] [Google Scholar]
  18. Regoes R. R., Hottinger J. W., Sygnarski L., Ebert D. The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle. Epidemiol Infect. 2003 Oct;131(2):957–966. doi: 10.1017/s0950268803008793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shelby K. S., Adeyeye O. A., Okot-Kotber B. M., Webb B. A. Parasitism-linked block of host plasma melanization. J Invertebr Pathol. 2000 Apr;75(3):218–225. doi: 10.1006/jipa.2000.4925. [DOI] [PubMed] [Google Scholar]
  20. Shiao S. H., Higgs S., Adelman Z., Christensen B. M., Liu S. H., Chen C. C. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol. 2001 Aug;10(4):315–321. doi: 10.1046/j.0962-1075.2001.00268.x. [DOI] [PubMed] [Google Scholar]
  21. Siva-Jothy M. T. A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc Biol Sci. 2000 Dec 22;267(1461):2523–2527. doi: 10.1098/rspb.2000.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Söderhäll K., Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 1998 Feb;10(1):23–28. doi: 10.1016/s0952-7915(98)80026-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES