Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jun 7;271(1544):1185–1195. doi: 10.1098/rspb.2003.2630

Oviposition strategies, host coercion and the stable exploitation of figs by wasps.

Douglas W Yu 1, Jo Ridley 1, Emmanuelle Jousselin 1, Edward Allen Herre 1, Stephen G Compton 1, James M Cook 1, Jamie C Moore 1, George D Weiblen 1
PMCID: PMC1691705  PMID: 15306369

Abstract

A classic example of a mutualism is the one between fig plants (Ficus) and their specialized and obligate pollinating wasps. The wasps deposit eggs in fig ovules, which the larvae then consume. Because the wasps derive their fitness only from consumed seeds, this mutualism can persist only if the wasps are prevented from laying eggs in all ovules. The search for mechanisms that can limit oviposition and stabilize the wasp-seed conflict has spanned more than three decades. We use a simple foraging model, parameterized with data from two Ficus species, to show how fig morphology reduces oviposition rates and helps to resolve the wasp-seed conflict. We also propose additional mechanisms, based on known aspects of fig biology, which can prevent even large numbers of wasps from ovipositing in all ovules. It has been suggested that in mutualistic symbioses, the partner that controls the physical resources, in this case Ficus, ultimately controls the rate at which hosts are converted to visitors, regardless of relative evolutionary rates. Our approach provides a mechanistic implementation of this idea, with potential applications to other mutualisms and to theories of virulence.

Full Text

The Full Text of this article is available as a PDF (182.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod R., Hamilton W. D. The evolution of cooperation. Science. 1981 Mar 27;211(4489):1390–1396. doi: 10.1126/science.7466396. [DOI] [PubMed] [Google Scholar]
  2. Bull J. J., Rice W. R. Distinguishing mechanisms for the evolution of co-operation. J Theor Biol. 1991 Mar 7;149(1):63–74. doi: 10.1016/s0022-5193(05)80072-4. [DOI] [PubMed] [Google Scholar]
  3. Ferdy Jean-Baptiste, Després Laurence, Godelle Bernard. Evolution of mutualism between globeflowers and their pollinating flies. J Theor Biol. 2002 Jul 21;217(2):219–234. doi: 10.1006/jtbi.2002.3018. [DOI] [PubMed] [Google Scholar]
  4. Hassell M. P., Varley G. C. New inductive population model for insect parasites and its bearing on biological control. Nature. 1969 Sep 13;223(5211):1133–1137. doi: 10.1038/2231133a0. [DOI] [PubMed] [Google Scholar]
  5. Herre EA, Knowlton N, Mueller UG, Rehner SA. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol. 1999 Feb;14(2):49–53. doi: 10.1016/s0169-5347(98)01529-8. [DOI] [PubMed] [Google Scholar]
  6. Janzen D. H. Pseudomyrmex nigropilosa: A Parasite of a Mutualism. Science. 1975 May 30;188(4191):936–937. doi: 10.1126/science.188.4191.936. [DOI] [PubMed] [Google Scholar]
  7. Jousselin Emmanuelle, Hossaert-McKey Martine, Herre Edward Allen, Kjellberg Finn. Why do fig wasps actively pollinate monoecious figs? Oecologia. 2002 Dec 17;134(3):381–387. doi: 10.1007/s00442-002-1116-0. [DOI] [PubMed] [Google Scholar]
  8. Jousselin Emmanuelle, Rasplus Jean-Yves, Kjellberg Finn. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution. 2003 Jun;57(6):1255–1269. doi: 10.1554/02-445. [DOI] [PubMed] [Google Scholar]
  9. Kiers E. Toby, Rousseau Robert A., West Stuart A., Denison R. Ford. Host sanctions and the legume-rhizobium mutualism. Nature. 2003 Sep 4;425(6953):78–81. doi: 10.1038/nature01931. [DOI] [PubMed] [Google Scholar]
  10. Machado C. A., Jousselin E., Kjellberg F., Compton S. G., Herre E. A. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc Biol Sci. 2001 Apr 7;268(1468):685–694. doi: 10.1098/rspb.2000.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Molbo Drude, Machado Carlos A., Sevenster Jan G., Keller Laurent, Herre Edward Allen. Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci U S A. 2003 Apr 24;100(10):5867–5872. doi: 10.1073/pnas.0930903100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. doi: 10.1098/rspb.1997.0208. [DOI] [PMC free article] [Google Scholar]
  13. Rasplus J. Y., Kerdelhué C., Le Clainche I., Mondor G. Molecular phylogeny of fig wasps Agaonidae are not monophyletic. C R Acad Sci III. 1998 Jun;321(6):517–526. doi: 10.1016/s0764-4469(98)80784-1. [DOI] [PubMed] [Google Scholar]
  14. Weiblen G. D., Yu D. W., Wes S. A. Pollination and parasitism in functionally dioecious figs. Proc Biol Sci. 2001 Mar 22;268(1467):651–659. doi: 10.1098/rspb.2000.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weiblen George D. How to be a fig wasp. Annu Rev Entomol. 2002;47:299–330. doi: 10.1146/annurev.ento.47.091201.145213. [DOI] [PubMed] [Google Scholar]
  16. West Stuart A., Kiers E. Toby, Simms Ellen L., Denison R. Ford. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc Biol Sci. 2002 Apr 7;269(1492):685–694. doi: 10.1098/rspb.2001.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yu Guangyan, Ma Daquan, Sun Kaihua, Li Tiejun, Zhang Ye. Myoepithelial carcinoma of the salivary glands: behavior and management. Chin Med J (Engl) 2003 Feb;116(2):163–165. [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15306369s01.pdf (131.5KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES