Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jun 7;271(1544):1101–1109. doi: 10.1098/rspb.2003.2664

Immune responses and the emergence of drug-resistant virus strains in vivo.

Dominik Wodarz 1, Alun L Lloyd 1
PMCID: PMC1691709  PMID: 15306358

Abstract

The treatment of viral infections using antiviral drugs has had a significant public health benefit in the setting of human immunodeficiency virus (HIV) infection, and newly developed drugs offer potential benefits in the management of other viral infections, including acute self-limiting infections such as influenza and picornaviruses (including the rhinoviruses that are responsible for a large proportion of 'common colds'). A serious concern with such treatments is that they may lead to the selection of drug-resistant strains. This has been a significant problem in the case of HIV infection. Existing mathematical-modelling studies of drug resistance have focused on the interactions between virus, target cells and infected cells, ignoring the impact of immune responses. Here, we present a model that explores the role of immune responses in the rise of drug-resistant mutants in vivo. We find that drug resistance is unlikely to be a problem if immune responses are maintained above a threshold level during therapy. Alternatively, if immune responses decline at a fast rate and fall below a threshold level during treatment (indicating impaired immunity), the rise of drug-resistant mutants is more likely. This indicates an important difference between HIV, which impairs immunity and for which immune responses have been observed to vanish during treatment, and viral infections such as influenza and rhinoviruses, for which such immune impairment is not present. Drug resistance is much more likely to be a problem in HIV than in acute and self-limiting infections.

Full Text

The Full Text of this article is available as a PDF (243.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Back N. K., Nijhuis M., Keulen W., Boucher C. A., Oude Essink B. O., van Kuilenburg A. B., van Gennip A. H., Berkhout B. Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO J. 1996 Aug 1;15(15):4040–4049. [PMC free article] [PubMed] [Google Scholar]
  2. Bonhoeffer S., May R. M., Shaw G. M., Nowak M. A. Virus dynamics and drug therapy. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6971–6976. doi: 10.1073/pnas.94.13.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonhoeffer S., Nowak M. A. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc Biol Sci. 1997 May 22;264(1382):631–637. doi: 10.1098/rspb.1997.0089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christophers J., Clayton J., Craske J., Ward R., Collins P., Trowbridge M., Darby G. Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother. 1998 Apr;42(4):868–872. doi: 10.1128/aac.42.4.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
  6. Coffin J. M. HIV viral dynamics. AIDS. 1996 Dec;10 (Suppl 3):S75–S84. [PubMed] [Google Scholar]
  7. De Boer R. J., Perelson A. S. Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol. 1998 Feb 7;190(3):201–214. doi: 10.1006/jtbi.1997.0548. [DOI] [PubMed] [Google Scholar]
  8. Englund J. A., Zimmerman M. E., Swierkosz E. M., Goodman J. L., Scholl D. R., Balfour H. H., Jr Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med. 1990 Mar 15;112(6):416–422. doi: 10.7326/0003-4819-76-3-112-6-416. [DOI] [PubMed] [Google Scholar]
  9. Frost S. D., McLean A. R. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. AIDS. 1994 Mar;8(3):323–332. doi: 10.1097/00002030-199403000-00005. [DOI] [PubMed] [Google Scholar]
  10. Groarke J. M., Pevear D. C. Attenuated virulence of pleconaril-resistant coxsackievirus B3 variants. J Infect Dis. 1999 Jun;179(6):1538–1541. doi: 10.1086/314758. [DOI] [PubMed] [Google Scholar]
  11. Hayden Frederick G., Herrington Darrell T., Coats Teresa L., Kim Kenneth, Cooper Ellen C., Villano Stephen A., Liu Siyu, Hudson Spencer, Pevear Daniel C., Collett Marc. Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials. Clin Infect Dis. 2003 Jun 6;36(12):1523–1532. doi: 10.1086/375069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holt R. D. Predation, apparent competition, and the structure of prey communities. Theor Popul Biol. 1977 Oct;12(2):197–129. doi: 10.1016/0040-5809(77)90042-9. [DOI] [PubMed] [Google Scholar]
  13. Kaech S. M., Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat Immunol. 2001 May;2(5):415–422. doi: 10.1038/87720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kalams S. A., Buchbinder S. P., Rosenberg E. S., Billingsley J. M., Colbert D. S., Jones N. G., Shea A. K., Trocha A. K., Walker B. D. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J Virol. 1999 Aug;73(8):6715–6720. doi: 10.1128/jvi.73.8.6715-6720.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kalams S. A., Goulder P. J., Shea A. K., Jones N. G., Trocha A. K., Ogg G. S., Walker B. D. Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J Virol. 1999 Aug;73(8):6721–6728. doi: 10.1128/jvi.73.8.6721-6728.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kalams S. A., Walker B. D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med. 1998 Dec 21;188(12):2199–2204. doi: 10.1084/jem.188.12.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murali-Krishna K., Lau L. L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999 Nov 12;286(5443):1377–1381. doi: 10.1126/science.286.5443.1377. [DOI] [PubMed] [Google Scholar]
  18. Nowak M. A., Bangham C. R. Population dynamics of immune responses to persistent viruses. Science. 1996 Apr 5;272(5258):74–79. doi: 10.1126/science.272.5258.74. [DOI] [PubMed] [Google Scholar]
  19. Pevear D. C., Tull T. M., Seipel M. E., Groarke J. M. Activity of pleconaril against enteroviruses. Antimicrob Agents Chemother. 1999 Sep;43(9):2109–2115. doi: 10.1128/aac.43.9.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ribeiro R. M., Bonhoeffer S. Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7681–7686. doi: 10.1073/pnas.97.14.7681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Richman D. D. Antiretroviral drug resistance: mechanisms, pathogenesis, clinical significance. Adv Exp Med Biol. 1996;394:383–395. doi: 10.1007/978-1-4757-9209-6_35. [DOI] [PubMed] [Google Scholar]
  22. Richman D. D. Drug resistance in viruses. Trends Microbiol. 1994 Oct;2(10):401–407. doi: 10.1016/0966-842x(94)90619-x. [DOI] [PubMed] [Google Scholar]
  23. Rosenberg E. S., Altfeld M., Poon S. H., Phillips M. N., Wilkes B. M., Eldridge R. L., Robbins G. K., D'Aquila R. T., Goulder P. J., Walker B. D. Immune control of HIV-1 after early treatment of acute infection. Nature. 2000 Sep 28;407(6803):523–526. doi: 10.1038/35035103. [DOI] [PubMed] [Google Scholar]
  24. Slifka M. K., Ahmed R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol. 1998 Jun;10(3):252–258. doi: 10.1016/s0952-7915(98)80162-3. [DOI] [PubMed] [Google Scholar]
  25. Slifka M. K., Antia R., Whitmire J. K., Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity. 1998 Mar;8(3):363–372. doi: 10.1016/s1074-7613(00)80541-5. [DOI] [PubMed] [Google Scholar]
  26. Turner Barbara J. Adherence to antiretroviral therapy by human immunodeficiency virus-infected patients. J Infect Dis. 2002 May 15;185 (Suppl 2):S143–S151. doi: 10.1086/340197. [DOI] [PubMed] [Google Scholar]
  27. Volberding Paul. Adherence, resistance, and timing: current issues in the use of new therapies. AIDS Read. 2002 Aug;12(8):349-50, 356-7, 368. [PubMed] [Google Scholar]
  28. Wahl L. M., Nowak M. A. Adherence and drug resistance: predictions for therapy outcome. Proc Biol Sci. 2000 Apr 22;267(1445):835–843. doi: 10.1098/rspb.2000.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wodarz D., Hall S. E., Usuku K., Osame M., Ogg G. S., McMichael A. J., Nowak M. A., Bangham C. R. Cytotoxic T-cell abundance and virus load in human immunodeficiency virus type 1 and human T-cell leukaemia virus type 1. Proc Biol Sci. 2001 Jun 22;268(1473):1215–1221. doi: 10.1098/rspb.2001.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wodarz D. Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance. J Theor Biol. 2001 Dec 7;213(3):447–459. doi: 10.1006/jtbi.2001.2426. [DOI] [PubMed] [Google Scholar]
  31. Yasin S. R., al-Nakib W., Tyrrell D. A. Pathogenicity for humans of human rhinovirus type 2 mutants resistant to or dependent on chalcone Ro 09-0410. Antimicrob Agents Chemother. 1990 Jun;34(6):963–966. doi: 10.1128/aac.34.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Stipdonk M. J., Lemmens E. E., Schoenberger S. P. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol. 2001 May;2(5):423–429. doi: 10.1038/87730. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES