Abstract
Heterothallic mushrooms accomplish sex by exchanging nuclei without cytoplasm. Hyphal fusions occur between haploid mycelia resulting from germinated spores and subsequent reciprocal nuclear exchange without cytoplasmic mixing. The resulting dikaryon is therefore a cytoplasmic mosaic with uniformly distributed nuclei (two in each cell). Cytoplasmic inheritance is doubly uniparental: both mated monokaryons can potentially transmit their cytoplasm to the sexual spores, but normally only a single type per spore is found.Intracellular competition between mitochondria is thus limited, but at the dikaryon level, the two types of mitochondria compete over transmission. This creates the conditions for genomic conflict: within the dikaryon, a selfish mitochondrial mutant with increased relative transmission can be favoured, but selection between dikaryons will act against such a mitochondrial mutant. Moreover, because nuclear fitness is directly dependent on dikaryon fitness, a reduction in dikaryon fitness directly conflicts with nuclear interests. We propose that genomic conflict explains the frequent occurrence of non-reciprocal nuclear exchange in mushrooms. With non-reciprocal exchange, one monokaryon donates a nucleus and the other accepts it, but not vice versa as in the typical life cycle. We propose a model where non-reciprocal nuclear exchange is primarily driven by mitochondria inducing male sterility and the evolution of nuclear suppressors.
Full Text
The Full Text of this article is available as a PDF (199.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birky C. W., Jr The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet. 2001;35:125–148. doi: 10.1146/annurev.genet.35.102401.090231. [DOI] [PubMed] [Google Scholar]
- Budar Françoise, Touzet Pascal, De Paepe Rosine. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica. 2003 Jan;117(1):3–16. doi: 10.1023/a:1022381016145. [DOI] [PubMed] [Google Scholar]
- Cosmides L. M., Tooby J. Cytoplasmic inheritance and intragenomic conflict. J Theor Biol. 1981 Mar 7;89(1):83–129. doi: 10.1016/0022-5193(81)90181-8. [DOI] [PubMed] [Google Scholar]
- ESSER K. Die Incompatibilitätsbeziehungen zwischen geographischen Rassen von Podospora anserina (Ces.) Rehm. I. Die genetische Analyse der Semi-Incompatibilität. Z Indukt Abstamm Vererbungsl. 1956;87(4):595–624. [PubMed] [Google Scholar]
- Hintz W., Anderson J. B., Horgen P. A. Nuclear migration and mitochondrial inheritance in the mushroom agaricus bitorquis. Genetics. 1988 May;119(1):35–41. doi: 10.1093/genetics/119.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurst L. D., Atlan A., Bengtsson B. O. Genetic conflicts. Q Rev Biol. 1996 Sep;71(3):317–364. doi: 10.1086/419442. [DOI] [PubMed] [Google Scholar]
- Hurst L. D. Selfish genetic elements and their role in evolution: the evolution of sex and some of what that entails. Philos Trans R Soc Lond B Biol Sci. 1995 Sep 29;349(1329):321–332. doi: 10.1098/rstb.1995.0120. [DOI] [PubMed] [Google Scholar]
- Jin T., Sonnenberg A. S., Van Griensven L. J., Horgen P. A. Investigation of Mitochondrial Transmission in Selected Matings between Homokaryons from Commercial and Wild-Collected Isolates of Agaricus bisporus (= Agaricus brunnescens). Appl Environ Microbiol. 1992 Nov;58(11):3553–3560. doi: 10.1128/aem.58.11.3553-3560.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kothe Erika, Gola Susanne, Wendland Jürgen. Evolution of multispecific mating-type alleles for pheromone perception in the homobasidiomycete fungi. Curr Genet. 2002 Dec 13;42(5):268–275. doi: 10.1007/s00294-002-0352-5. [DOI] [PubMed] [Google Scholar]
- Kües U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev. 2000 Jun;64(2):316–353. doi: 10.1128/mmbr.64.2.316-353.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. B., Taylor J. W. Uniparental inheritance and replacement of mitochondrial DNA in Neurospora tetrasperma. Genetics. 1993 Aug;134(4):1063–1075. doi: 10.1093/genetics/134.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May G., Taylor J. W. Patterns of mating and mitochondrial DNA inheritance in the agaric Basidiomycete Coprinus cinereus. Genetics. 1988 Feb;118(2):213–220. doi: 10.1093/genetics/118.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Shea S. F., Chaure P. T., Halsall J. R., Olesnicky N. S., Leibbrandt A., Connerton I. F., Casselton L. A. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics. 1998 Mar;148(3):1081–1090. doi: 10.1093/genetics/148.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olesnicky N. S., Brown A. J., Honda Y., Dyos S. L., Dowell S. J., Casselton L. A. Self-compatible B mutants in coprinus with altered pheromone-receptor specificities. Genetics. 2000 Nov;156(3):1025–1033. doi: 10.1093/genetics/156.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. L., Duchesne L. C., Bruhn J. N., Anderson J. B. Mitochondrial genetics in a natural population of the plant pathogen armillaria. Genetics. 1990 Nov;126(3):575–582. doi: 10.1093/genetics/126.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaillancourt L. J., Raper C. A. Pheromones and pheromone receptors as mating-type determinants in basidiomycetes. Genet Eng (N Y) 1996;18:219–247. doi: 10.1007/978-1-4899-1766-9_13. [DOI] [PubMed] [Google Scholar]
- de la Bastide Paul Y., Horgen Paul A. Mitochondrial inheritance and the detection of non-parental mitochondrial DNA haplotypes in crosses of Agaricus bisporus homokaryons. Fungal Genet Biol. 2003 Apr;38(3):333–342. doi: 10.1016/s1087-1845(02)00584-4. [DOI] [PubMed] [Google Scholar]