Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jul 7;271(1546):1363–1370. doi: 10.1098/rspb.2004.2726

Prevalence of blood parasites in European passeriform birds.

Alex Scheuerlein 1, Robert E Ricklefs 1
PMCID: PMC1691737  PMID: 15306334

Abstract

Variation in the prevalence of blood parasites among species of birds has been used to test hypotheses about the effects of sexual selection and parental investment on disease resistance, and how vector abundance influences infection. However, the factors causing this variation are still poorly understood. We assessed the statistical effects of biogeographic, plumage-related and life-history traits on the prevalence of the blood parasites Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma in European passerine birds. Most of the variation in parasite prevalence occurred at low taxonomic levels. Brighter male plumage and greater host body mass were associated with higher prevalence, explaining 32% of the total variation. Male plumage brightness remained a significant factor when we controlled for phylogenetic effects. These relationships were driven primarily by simuliid-transmitted parasites (Leucocytozoon, Trypanosoma), which were more frequent in species with northern distributions. Host species with greater maximum longevity and shorter nestling periods had higher prevalences of Plasmodium; however, the effect was not stable after controlling for phylogeny using pairwise contrasts. Coevolution between hosts and parasites appears to create temporal and spatial variation that disconnects haematozoan prevalence from evolutionarily conservative life-history traits while creating some positive associations with traits that are phylogenetically labile. Clearly, ecologists should be cautious in relating patterns of variation in haematozoan prevalence to particular host traits.

Full Text

The Full Text of this article is available as a PDF (171.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed F. E., Mohammed A. H. Haemoproteus columbae: course of infection, relapse and immunity to reinfection in the pigeon. Z Parasitenkd. 1978 Nov 27;57(3):229–236. doi: 10.1007/BF00928036. [DOI] [PubMed] [Google Scholar]
  2. Applegate J. E., Beaudoin R. L. Mechanism of spring relapse in avian malaria: effect of gonadotropin and corticosterone. J Wildl Dis. 1970 Oct;6(4):443–447. doi: 10.7589/0090-3558-6.4.443. [DOI] [PubMed] [Google Scholar]
  3. Applegate J. E. Population changes in latent avian malaria infections associated with season and corticosterone treatment. J Parasitol. 1970 Jun;56(3):439–443. [PubMed] [Google Scholar]
  4. Beaudoin R. L., Applegate J. E., Davis D. E., McLean R. G. A model for the ecology of avian malaria. J Wildl Dis. 1971 Jan;7(1):5–13. doi: 10.7589/0090-3558-7.1.5. [DOI] [PubMed] [Google Scholar]
  5. Bennett G. F., Cameron M. Seasonal prevalence of avian hematozoa in passeriform birds of Atlantic Canada. Can J Zool. 1974 Oct;52(10):1259–1264. doi: 10.1139/z74-167. [DOI] [PubMed] [Google Scholar]
  6. Bennett G. F., Campbell A. G., Cameron M. Hematozoa of passeriform birds from insular Newfoundland. Can J Zool. 1974 Jun;52(6):765–772. doi: 10.1139/z74-100. [DOI] [PubMed] [Google Scholar]
  7. Bennett G. F., Coombs R. F. Ornithophilic vectors of avian hematozoa in insular Newfoundland. Can J Zool. 1975 Sep;53(9):1241–1246. doi: 10.1139/z75-148. [DOI] [PubMed] [Google Scholar]
  8. Bennett G. F., Thommes F., Blancou J., Artois M. Blood parasites of some birds from the Lorraine region, France. J Wildl Dis. 1982 Jan;18(1):81–88. doi: 10.7589/0090-3558-18.1.81. [DOI] [PubMed] [Google Scholar]
  9. Bensch S., Stjernman M., Hasselquist D., Ostman O., Hansson B., Westerdahl H., Pinheiro R. T. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc Biol Sci. 2000 Aug 7;267(1452):1583–1589. doi: 10.1098/rspb.2000.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blanco G., Merino S., Tella J. L., Fargallo J. A., Gajón A. Hematozoa in two populations of the threatened red-billed chough in Spain. J Wildl Dis. 1997 Jul;33(3):642–645. doi: 10.7589/0090-3558-33.3.642. [DOI] [PubMed] [Google Scholar]
  11. Buckling A., Read A. F. The effect of partial host immunity on the transmission of malaria parasites. Proc Biol Sci. 2001 Nov 22;268(1483):2325–2330. doi: 10.1098/rspb.2001.1808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Congdon L. L., Farmer J. N., Longenecker B. M., Breitenbach R. P. Natural and acquired antibodies to Plasmodium lophurae in intact and bursaless chickens. II. Immunofluorescent studies. J Parasitol. 1969 Aug;55(4):817–824. [PubMed] [Google Scholar]
  13. Fallon Sylvia M., Bermingham Eldredge, Ricklefs Robert E. Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution. 2003 Mar;57(3):606–615. doi: 10.1111/j.0014-3820.2003.tb01552.x. [DOI] [PubMed] [Google Scholar]
  14. Fehrer J. Conflicting character distribution within different data sets on cardueline finches: artifact or history? Mol Biol Evol. 1996 Jan;13(1):7–20. doi: 10.1093/oxfordjournals.molbev.a025572. [DOI] [PubMed] [Google Scholar]
  15. Greiner E. C., Bennett G. F., White E. M., Coombs R. F. Distribution of the avian hematozoa of North America. Can J Zool. 1975 Dec;53(12):1762–1787. doi: 10.1139/z75-211. [DOI] [PubMed] [Google Scholar]
  16. Haberkorn A. Observations on malaria in European perching birds (passeriformes). Zentralbl Bakteriol Mikrobiol Hyg A. 1984 Mar;256(3):288–295. [PubMed] [Google Scholar]
  17. Hamilton W. D., Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982 Oct 22;218(4570):384–387. doi: 10.1126/science.7123238. [DOI] [PubMed] [Google Scholar]
  18. Jarvi Susan I., Schultz Jeffrey J., Atkinson Carter T. PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol. 2002 Feb;88(1):153–158. doi: 10.1645/0022-3395(2002)088[0153:PDUTPO]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  19. Martins El. Adaptation and the comparative method. Trends Ecol Evol. 2000 Jul;15(7):296–299. doi: 10.1016/s0169-5347(00)01880-2. [DOI] [PubMed] [Google Scholar]
  20. Merino S., Moreno J., Sanz J. J., Arriero E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc Biol Sci. 2000 Dec 22;267(1461):2507–2510. doi: 10.1098/rspb.2000.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Merino S., Potti J., Fargallo J. A. Blood parasites of passerine birds from central Spain. J Wildl Dis. 1997 Jul;33(3):638–641. doi: 10.7589/0090-3558-33.3.638. [DOI] [PubMed] [Google Scholar]
  22. Miller Louis H., Baruch Dror I., Marsh Kevin, Doumbo Ogobara K. The pathogenic basis of malaria. Nature. 2002 Feb 7;415(6872):673–679. doi: 10.1038/415673a. [DOI] [PubMed] [Google Scholar]
  23. doi: 10.1098/rspb.1998.0308. [DOI] [PMC free article] [Google Scholar]
  24. Patz Jonathan A., Hulme Mike, Rosenzweig Cynthia, Mitchell Timothy D., Goldberg Richard A., Githeko Andrew K., Lele Subhash, McMichael Anthony J., Le Sueur David. Climate change: Regional warming and malaria resurgence. Nature. 2002 Dec 12;420(6916):627–628. doi: 10.1038/420627a. [DOI] [PubMed] [Google Scholar]
  25. Paul Rick E. L., Nu Van Anh Ton, Krettli Antoniana U., Brey Paul T. Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector. Proc Biol Sci. 2002 Dec 22;269(1509):2551–2557. doi: 10.1098/rspb.2002.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ricklefs R. E. Embryonic development period and the prevalence of avian blood parasites. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4722–4725. doi: 10.1073/pnas.89.10.4722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ricklefs Robert E., Fallon Sylvia M. Diversification and host switching in avian malaria parasites. Proc Biol Sci. 2002 May 7;269(1494):885–892. doi: 10.1098/rspb.2001.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rintamäki P. T., Huhta E., Jokimäki J., Squires-Parsons D. Leucocytozoonosis and trypanosomiasis in redstarts in Finland. J Wildl Dis. 1999 Jul;35(3):603–607. doi: 10.7589/0090-3558-35.3.603. [DOI] [PubMed] [Google Scholar]
  29. SERGENT E. Recherches expérimentales sur l'infection latente et la prémunition dans le paludisme; seconde partie. Arch Inst Pasteur Alger. 1952 Sep;30(3):203–239. [PubMed] [Google Scholar]
  30. Super P. E., van Riper C., 3rd A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J Wildl Dis. 1995 Oct;31(4):447–461. doi: 10.7589/0090-3558-31.4.447. [DOI] [PubMed] [Google Scholar]
  31. Tella J. L., Blanco G., Forero M. G., Gajón A., Donázar J. A., Hiraldo F. Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1785–1789. doi: 10.1073/pnas.96.4.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waldenström J., Bensch S., Kiboi S., Hasselquist D., Ottosson U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol. 2002 Aug;11(8):1545–1554. doi: 10.1046/j.1365-294x.2002.01523.x. [DOI] [PubMed] [Google Scholar]
  33. Winkler D. W., Sheldon F. H. Evolution of nest construction in swallows (Hirundinidae): a molecular phylogenetic perspective. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5705–5707. doi: 10.1073/pnas.90.12.5705. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15306334s01.pdf (81.1KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES