Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jul 7;271(1546):1371–1375. doi: 10.1098/rspb.2004.2730

Ectoparasite-modulated deposition of maternal androgens in great tit eggs.

Barbara Tschirren 1, Heinz Richner 1, Hubert Schwabl 1
PMCID: PMC1691743  PMID: 15306335

Abstract

Maternal yolk androgens can promote growth and competitive abilities of nestling birds but are also suggested to increase susceptibility to parasites or suppress immune function. We tested the hypothesis that females exposed to ectoparasites during egg formation will adjust the content of androgens in the yolk. We predicted that when anticipating high levels of parasitism, females deposit (i) less androgens into all eggs of their clutch and (ii) smaller amounts of androgens in eggs late in the laying sequence to facilitate brood reduction. In a field experiment we exposed female great tits (Parus major) to hen fleas (Ceratophyllus gallinae), or kept them free of ectoparasites prior to egg laying. We collected the eggs and measured yolk concentrations of androstenedione (A4), testosterone (T) and 5alpha-dihydrotestosterone (DHT) by radioimmunoassay. Among clutches, eggs of ectoparasite-exposed females contained significantly less A4 and tended to contain less T, whereas DHT content was unaffected. Within clutches, content of A4 and T increased significantly with laying order whereas DHT content significantly decreased. These patterns were unaffected by ectoparasites. In summary, our results provide no evidence for hormone-based facilitation of brood reduction under ectoparasite exposure but support the hypothesis that females exposed to ectoparasites reduce levels of T and its precursor A4 in yolk and might thereby reduce the negative effects of parasites on offspring.

Full Text

The Full Text of this article is available as a PDF (103.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. R. Host resistance to ectoparasites. Rev Sci Tech. 1994 Dec;13(4):1287–1303. doi: 10.20506/rst.13.4.824. [DOI] [PubMed] [Google Scholar]
  2. Eising C. M., Eikenaar C., Schwabl H., Groothuis T. G. Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc Biol Sci. 2001 Apr 22;268(1469):839–846. doi: 10.1098/rspb.2001.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gause W. C., Marsh J. A. Effect of testosterone treatments for varying periods on autoimmune development and on specific infiltrating leukocyte populations in the thyroid gland of obese strain chickens. Clin Immunol Immunopathol. 1986 Jun;39(3):464–478. doi: 10.1016/0090-1229(86)90174-1. [DOI] [PubMed] [Google Scholar]
  4. Gil D., Graves J., Hazon N., Wells A. Male attractiveness and differential testosterone investment in zebra finch eggs. Science. 1999 Oct 1;286(5437):126–128. doi: 10.1126/science.286.5437.126. [DOI] [PubMed] [Google Scholar]
  5. Ketterson E. D., Nolan V., Jr, Wolf L., Ziegenfus C., Dufty A. M., Jr, Ball G. F., Johnsen T. S. Testosterone and avian life histories: the effect of experimentally elevated testosterone on corticosterone and body mass in dark-eyed juncos. Horm Behav. 1991 Dec;25(4):489–503. doi: 10.1016/0018-506x(91)90016-b. [DOI] [PubMed] [Google Scholar]
  6. Lipar J. L., Ketterson E. D. Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proc Biol Sci. 2000 Oct 7;267(1456):2005–2010. doi: 10.1098/rspb.2000.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Martin J. T. Sexual dimorphism in immune function: the role of prenatal exposure to androgens and estrogens. Eur J Pharmacol. 2000 Sep 29;405(1-3):251–261. doi: 10.1016/s0014-2999(00)00557-4. [DOI] [PubMed] [Google Scholar]
  8. doi: 10.1098/rspb.1998.0263. [DOI] [PMC free article] [Google Scholar]
  9. Popescu O., Misevic G. N. Self-recognition by proteoglycans. Nature. 1997 Mar 20;386(6622):231–232. doi: 10.1038/386231b0. [DOI] [PubMed] [Google Scholar]
  10. Schuurs A. H., Dietrich H., Gruber J., Wick G. Effects of sex steroid analogs on spontaneous autoimmune thyroiditis in obese strain chickens. Int Arch Allergy Immunol. 1992;97(4):337–344. doi: 10.1159/000236142. [DOI] [PubMed] [Google Scholar]
  11. Schwabl H. Environment modifies the testosterone levels of a female bird and its eggs. J Exp Zool. 1996 Oct 1;276(2):157–163. doi: 10.1002/(SICI)1097-010X(19961001)276:2<157::AID-JEZ9>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  12. Schwabl H. Maternal testosterone in the avian egg enhances postnatal growth. Comp Biochem Physiol A Physiol. 1996 Jul;114(3):271–276. doi: 10.1016/0300-9629(96)00009-6. [DOI] [PubMed] [Google Scholar]
  13. Sockman K. W., Schwabl H. Yolk androgens reduce offspring survival. Proc Biol Sci. 2000 Jul 22;267(1451):1451–1456. doi: 10.1098/rspb.2000.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tripet F., Richner H. The coevolutionary potential of a 'generalist' parasite, the hen flea Ceratophyllus gallinae. Parasitology. 1997 Oct;115(Pt 4):419–427. doi: 10.1017/s0031182097001467. [DOI] [PubMed] [Google Scholar]
  15. Uller Tobias, Olsson Mats. Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard (Lacerta vivipara). Proc Biol Sci. 2003 Sep 7;270(1526):1867–1870. doi: 10.1098/rspb.2003.2451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Verboven Nanette, Monaghan Pat, Evans Darren M., Schwabl Hubert, Evans Neil, Whitelaw Christine, Nager Ruedi G. Maternal condition, yolk androgens and offspring performance: a supplemental feeding experiment in the lesser black-backed gull (Larus fuscus). Proc Biol Sci. 2003 Nov 7;270(1530):2223–2232. doi: 10.1098/rspb.2003.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES